Équipe de Recherche en Physique de l'Information Quantique


Abstract = {Quantum information processors need to be protected against errors and faults. One of the most widely considered fault-tolerant architecture is based on surface codes. While the general principles of these codes are well understood and basic code properties such as minimum distance and rate are easy to characterize, a code's average performance depends on the detailed geometric layout of the qubits. To date, optimizing a surface code architecture and comparing different geometric layouts relies on costly numerical simulations. Here, we propose a benchmarking algorithm for simulating the performance of surface codes, and generalizations thereof, that runs in linear time. We implemented this algorithm in a software that generates performance reports and allows to quickly compare different architectures. },
Author = {Nicolas Delfosse, Pavithran Iyer and David Poulin},
Date-Added = {2016-11-15 18:31:35 +0000},
Date-Modified = {2016-11-15 18:34:18 +0000},
Eprint = {arXiv:1611.04256},
Title = {A linear-time benchmarking tool for generalized surface codes},
Year = {2016},
local-url = {DIP16b.pdf}}