Équipe de Recherche en Physique de l'Information Quantique


Abstract = {We present a family of algorithms, combining real-space renormalization methods and belief propagation, to estimate the free energy of a topologically ordered system in the presence of defects. Such an algorithm is needed to preserve the quantum information stored in the ground space of a topologically ordered system and to decode topological error-correcting codes. For a system of linear size $ell$, our algorithm runs in time $logell$ compared to $ell^6$ needed for the minimum-weight perfect matching algorithm previously used in this context and achieves a higher depolarizing error threshold.},
Author = {Guillaume Duclos-Cianci and David Poulin},
Date-Added = {2009-11-09 09:11:43 -0500},
Date-Modified = {2010-05-06 13:37:27 -0400},
Eprint = {arXiv:0911.0581},
Journal = {Phys. Rev. Lett.},
Keywords = {Topological QC; Error correction},
Local-Url = {DP10a.pdf},
Pages = {050504},
Title = {Fast decoders for topological quantum codes},
Volume = {104},
Year = {2010}}