LOGO

Équipe de Recherche en Physique de l'Information Quantique



Publications


@article{DP14a,
Abstract = {In leading fault-tolerant quantum computing schemes, accurate transformation are obtained by a two-stage process. In a first stage, a discrete, universal set of fault-tolerant operations is obtained by error-correcting noisy transformations and distilling resource states. In a second stage, arbitrary transformations are synthesized to desired accuracy by combining elements of this set into a circuit. Here, we present a scheme which merges these two stages into a single one, directly distilling complex transformations. We find that our scheme can reduce the total overhead to realize certain gates by up to a few orders of magnitude. In contrast to other schemes, this efficient gate synthesis does not require computationally intensive compilation algorithms, and a straightforward generalization of our scheme circumvents compilation and synthesis altogether.},
Author = {G. Duclos-Cianci and D. Poulin},
Eprint = {arXiv:1403.5280},
Journal = {Phys. Rev. A},
Pages = {042315},
Title = {Reducing the quantum computing overhead with complex gate distillation},
Volume = {91},
Year = {2015},
local-url = {DP15a.pdf}}