Équipe de Recherche en Physique de l'Information Quantique


Abstract = {The surface code is a many-body quantum system, and simulating it in generic conditions is computationally hard. While the surface code is believed to have a high threshold, the numerical simulations used to establish this threshold are based on simplified noise models. We present a tensor-network algorithm for simulating error correction with the surface code under arbitrary local noise. Our simulation is exact within statistical fluctuations and we use it to study the threshold and the sub-threshold behaviour of the amplitude-damping and systematic rotation channels. We also compare these exact results to those obtained by making standard approximations to the noise models.},
Author = {Andrew S. Darmawan and David Poulin},
Date-Added = {2016-07-25 15:46:30 +0000},
Date-Modified = {2017-07-28 13:28:20 +0000},
Eprint = {arXiv:1607.06460},
Journal = {Phys. Rev. Lett.},
Keywords = {Topological QC},
Pages = {040502},
Title = {Tensor-network simulations of the surface code under realistic noise},
Volume = {119},
Year = {2017},
local-url = {DP16c.pdf}}