Équipe de Recherche en Physique de l'Information Quantique


Abstract = {We demonstrate that the magnetoconductance of small lateral quantum dots in the strongly-coupled regime (i.e. when the leads can support one or more propagating modes) shows a pronounced splitting of the conductance peaks and dips which persists over a wide range of magnetic fields (from zero field to the edge-state regime) and is virtually independent of the magnetic field strength. Our numerical analysis of the conductance based on the Hubbard Hamiltonian demonstrates that this is essentially a many-body/spin effect that can be traced to a splitting of degenerate levels in the corresponding closed dot. The above effect in open dots can be regarded as a counterpart of the Coulomb blockade effect in weakly coupled dots, with the difference, however, that the splitting of the peaks originates from the interaction between the electrons of opposite spin. {\copyright} 2005 American Institute of Physics.},
Author = {Evaldsson, M. and Zozoulenko, I.V. and Ciorga, M. and Zawadzki, P. and Sachrajda, A.S.},
Document_Type = {Conference Paper},
Journal = {AIP Conference Proceedings},
Pages = {1413-1414},
Source = {Scopus},
Title = {Spin splitting in open quantum dots},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-33749495753&partnerID=40&md5=d725e91f91c29c1642c316ee8270c684},
Volume = {772},
Year = {2005},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-33749495753&partnerID=40&md5=d725e91f91c29c1642c316ee8270c684}}