LOGO

Équipe de Recherche en Physique de l'Information Quantique



Publications


@conference{Fafard2000100,
Abstract = {The artificial atoms with sharp electronic shells can be fabricated with good control are demonstrated using self-assembled quantum dots (QD) grown by molecular beam epitaxy. Size and shape engineering of the QD during growth permits the tailoring of their intersublevel energy spacings. In addition to size and shape engineering of the QD in the case of single-layer samples, significant improvements in the uniformity of the vertically self-aligned stacked QDs were observed. State-filling spectroscopy of the zero-dimensional transitions between confined electrons and holes show that the energy levels are readily tunable.},
Author = {Fafard, S. and Liu, H.C. and Wasilewski, Z.R. and McCaffrey, J. and Spanner, M. and Raymond, S. and Allen, C.Ni. and Hinzer, K. and Lapointe, J. and Struby, C. and Gao, M. and Hawrylak, P. and Gould, C. and Sachrajda, A. and Zawadzki, P.},
Document_Type = {Conference Paper},
Journal = {Proceedings of SPIE - The International Society for Optical Engineering},
Pages = {100-114},
Source = {Scopus},
Title = {Quantum dot devices},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0033684771&partnerID=40&md5=9ed83dd70ad87229b516e8d3c3ed1c6f},
Volume = {4078},
Year = {2000},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0033684771&partnerID=40&md5=9ed83dd70ad87229b516e8d3c3ed1c6f}}