LOGO

Équipe de Recherche en Physique de l'Information Quantique



Publications


@article{Gaudreau201254,
Abstract = {Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications 1-4. It has been suggested that triple quantum dots may provide additional tools and functionalities. These include encoding information either to obtain protection from decoherence or to permit all-electrical operation, efficient spin busing across a quantum circuit 6, and to enable quantum error correction using the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate coherent manipulation of two interacting three-spin states. We employ the Landau-Zener-St{\"o}ckelberg 7,8 approach for creating and manipulating coherent superpositions of quantum states. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures 10, but has not been previously demonstrated.},
Author = {Gaudreau, L. and Granger, G. and Kam, A. and Aers, G.C. and Studenikin, S.A. and Zawadzki, P. and Pioro-Ladri{\`e}re, M. and Wasilewski, Z.R. and Sachrajda, A.S.},
Document_Type = {Article},
Journal = {Nature Physics},
Number = {1},
Pages = {54-58},
Source = {Scopus},
Title = {Coherent control of three-spin states in a triple quantum dot},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84355162739&partnerID=40&md5=7f2b0b02d95d0c84782e1e8d030eb75d},
Volume = {8},
Year = {2012},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84355162739&partnerID=40&md5=7f2b0b02d95d0c84782e1e8d030eb75d}}