Équipe de Recherche en Physique de l'Information Quantique


Abstract = {Magnetoconductance measurements have been made on an interesting versatile system. Six independent gates, on a two-dimensional electron-gas heterostructure, are used to define electrostatically two independently controllable antidots within a quantum wire. Measurements in a magnetic field show trapping of trajectories around either a single or a pair of antidots. Collimation, adiabatic transport, and trapping effects combine to create a rich variety of magnetoconductance features which are modulated by large single-period Aharonov-Bohm oscillations at temperatures below 1 K. Experimental features are compared to results from semiclassical ballistic-trajectory models and the similarities and differences between this system and antidot lattices discussed. {\copyright} 1995 The American Physical Society.},
Author = {Gould, C. and Sachrajda, A.S. and Feng, Y. and Delage, A. and Kelly, P.J. and Leung, K. and Coleridge, P.T.},
Document_Type = {Article},
Journal = {Physical Review B},
Number = {16},
Pages = {11213-11216},
Source = {Scopus},
Title = {Phase coherence and trajectory trapping around one or two independently controllable antidots in quantum wires},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0001218966&partnerID=40&md5=07400a6119849ad557a3f2fa78bc10ef},
Volume = {51},
Year = {1995},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0001218966&partnerID=40&md5=07400a6119849ad557a3f2fa78bc10ef}}