Équipe de Recherche en Physique de l'Information Quantique


Abstract = {We have introduced a controllable nanoscale incursion into a potential barrier imposed across a two-dimensional electron gas, and report on the phenomena that we observe as the incursion develops. In the quantum Hall regime, the conductance of this system displays quantized plateaus, broad minima, and oscillations. We explain these features and their evolution with electrostatic potential geometry and magnetic field as a progression of current patterns formed by tunneling between edge and localized states within the barrier. {\copyright} 1995 The American Physical Society.},
Author = {Johnson, B.L. and Sachrajda, A.S. and Kirczenow, G. and Feng, Y. and Taylor, R.P. and Henning, L. and Wang, J. and Zawadzki, P. and Coleridge, P.T.},
Document_Type = {Article},
Journal = {Physical Review B},
Number = {12},
Pages = {7650-7654},
Source = {Scopus},
Title = {Quantum Hall effect and inter-edge-state tunneling within a barrier},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0002934591&partnerID=40&md5=c39c5bdf4e464220737d67e82e9d79eb},
Volume = {51},
Year = {1995},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0002934591&partnerID=40&md5=c39c5bdf4e464220737d67e82e9d79eb}}