Équipe de Recherche en Physique de l'Information Quantique


author = {Kasumov, A., Deblock, R., Kociak, M., Reulet, B., Bouchiat, H., Khodos, I., Gorbatov, Y., Volkov, V., Journet, C., Stephan, O., Burghard, M.},
title = {Proximity-induced superconductivity in carbon nanotubes},
journal = {Comptes Rendus de l'Academie de Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie},
year = {1999},
volume = {327},
number = {9},
pages = {933-943},
note = {cited By (since 1996) 0},
url = {http://www.scopus.com/inward/record.url?eid = 2-s2.0-0033198540&partnerID = 40&md5 = 495647c360f66637e8714ed4d78f0884},
affiliation = {Laboratoire de Physique des Solides, Associé au CNRS, Université Paris-Sud, bât. 510, 91405 Orsay, France; Inst. of Microelectronics Technology, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation; Grp. de Dynam. des Phases Condensees, Université Montpellier-II, 34095 Montpellier, France; Max-Plank Institute, 70506 Stuttgart, Germany},
abstract = {Single wall carbon nanotubes (SWNT) are model systems for the study of electronic transport in one-dimensional conductors. They are expected to exhibit strong electronic correlations and non-Fermi liquid behavior as suggested by recent experiments. The possibility to induce supercurrents through such molecular wires is a challenging question both for experimentalists and theoreticians. In this paper we show experimental evidence of induced superconductivity in a SWNT. This proximity effect is observed in a single 1 nm diameter SWNT, in individual cristalline ropes containing about 100 nanotubes and also on multiwalled tubes. These samples are suspended as strings between two superconducting electrodes (double layer Au-Re, Au-Ta or Sn film) at a distance varying between 100 and 2 000 nm. This allows their structural study in a transmission electron microscope. When their resistance is low enough, SWNT become superconducting with surprisingly high critical currents (in the micro-Ampere range for a single tube of normal state resistance 25 kΩ). This critical current, extensively studied as function of temperature and magnetic field, exhibits unusual features which are not observed in conventional Superconducting-Normal-Superconducting junctions and can be related to the strong 1D character of these samples. We also show evidence of a huge sensitivity of dc transport properties of the tubes to electromagnetic radiation in the radio-frequency range.},
author_keywords = {Carbon nanotubes; Mesoscopic superconductivity; Proximity effect},
document_type = {Article},
source = {Scopus}}