Équipe de Recherche en Physique de l'Information Quantique


author = {Kasumov, A., Kociak, M., Ferrier, M., Deblock, R., Guéron, S., Reulet, B., Khodos, I., Stéphan, O., Bouchiat, H. },
title = {Quantum transport through carbon nanotubes: Proximity-induced and intrinsic superconductivity},
journal = {Physical Review B - Condensed Matter and Materials Physics},
year = {2003},
volume = {68},
number = {21},
pages = {2145211-21452116},
art_number = {214521},
note = {cited By (since 1996) 58},
url = {http://www.scopus.com/inward/record.url?eid = 2-s2.0-1642534645&partnerID = 40&md5 = cfe877408d248e67375d66218b3b8318},
affiliation = {Laboratoire de Physique des Solides, Associé au CNRS, Université Paris-Sud, 91405 Orsay, France; Inst. Microlec. Technol./High P. M., Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russian Federation; RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan},
abstract = {We report low-temperature transport measurements on suspended single-walled carbon nanotubes (both individual tubes and ropes). The technique we have developed, where tubes are soldered on low-resistive metallic contacts across a slit, enables a good characterization of the samples by transmission electron microscopy. It is possible to obtain individual tubes with a room-temperature resistance smaller than 40 kfl, which remain metallic down to very low temperatures. When the contact pads are superconducting, nanotubes exhibit proximity-induced superconductivity with surprisingly large values of supercurrent. We have also recently observed intrinsic superconductivity in ropes of single-walled carbon nanotubes connected to normal contacts, when the distance between the normal electrodes is large enough, since otherwise superconductivity is destroyed by (inverse) proximity effect. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsive interactions at low temperature, and enable investigation of superconductivity in a one-dimensional limit never explored before.},
document_type = {Article},
source = {Scopus}}