LOGO

Équipe de Recherche en Physique de l'Information Quantique



Publications


@Article={PioroLadriere:2008p9,
author = {M Pioro-Ladriere and T Obata and Y Tokura and Y. -S Shin and T Kubo and K Yoshida and T Taniyama and S Tarucha},
journal = {Nat Phys},
title = {Electrically driven single-electron spin resonance in a slanting Zeeman field},
abstract = {The rapid rise of spintronics and quantum information science has led to a strong interest in developing the ability to coherently manipulate electron spins(1). Electron spin resonance(2) is a powerful technique for manipulating spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins(3-5). In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields(6,7). Here we report experiments in which electrically driven addressable spin rotations on two individual electrons were realized by integrating a micrometre-size ferromagnet into a double-quantum-dot device. We find that it is the stray magnetic field of the micromagnet that enables the electrical control and spin selectivity. The results suggest that our approach can be tailored to multidot architecture and therefore could open an avenue towards manipulating electron spins electrically in a scalable way.},
affiliation = {Japan Sci & Technol Agcy, ICORP, Quantum Spin Informat Project, Atsugi, Kanagawa 2430198, Japan},
number = {10},
pages = {776--779},
volume = {4},
year = {2008},
month = {Jan},
language = {English},
keywords = {Manipulation, Double-Quantum Dots},
date-added = {2009-12-07 09:47:29 -0500},
date-modified = {2009-12-07 09:47:43 -0500},
doi = {10.1038/nphys1053},
pmid = {000259686800010},
URL = {http://www.nature.com/nphys/journal/v4/n10/abs/nphys1053.html},
uri = {papers://2218479D-7AA1-43D5-8E9E-4EF38C7D1379/Paper/p9},
rating = {0}}