Équipe de Recherche en Physique de l'Information Quantique


Abstract = {We study macroscopic observables defined as the total value of a physical quantity over a collection of quantum systems. We show that previous results obtained for infinite ensemble of identically prepared systems lead to incorrect conclusions for finite ensembles. In particular, exact measurement of a macroscopic observable significantly disturbs the state of any finite ensemble. However, we show how this disturbance can be made arbitrarily small when the measurement are of finite accuracy. We demonstrate a general tradeoff between state disturbance and measurement coarseness as a function of the size of the ensemble. Using this tradeoff, we show that the histories generated by any sequence of finite accuracy macroscopic measurements always generate a consistent family in the absence of large scale entanglement, for sufficiently large ensembles. Hence, macroscopic observables behave "classically" provided that their accuracy is coarser than the quantum correlation length-scale of the system. The role of these observable is also discussed in the context of NMR quantum information processing and bulk ensemble quantum state tomography. },
Author = {Poulin, D.},
Date-Modified = {2010-05-06 13:52:38 -0400},
Eprint = {quant-ph/0403212},
Journal = {Phys. Rev. A},
Keywords = {Quantum Theory; Emergent; Decoherence; Renormalization; Foundations},
Local-Url = {Pou05a.pdf},
Pages = {22102},
Title = {Macroscopic Observables},
Volume = {71},
Year = {2005}}