Équipe de Recherche en Physique de l'Information Quantique


Abstract = {An analysis of the semicircular loop, vibrating-wire3He viscometer has been made. Emphasis was placed upon the magnetic field dependence of the resonance frequency and frequency width (damping) in order to study the suitability of the device for a field-independent thermometer. The analysis was complemented by experiments with Ta, Nb-Ti, Cu, Ag, Au, and Cu-Ni wires. It was found that the various wires, whether superconducting or pure or impure normal metals, have advantages and disadvantages. The superconducting wires show a large field-dependent frequency shift due to induced magnetization and a field-dependent damping due to flux motion. Pure normal metals also show induced magnetization (eddy-current) frequency shift and damping, and impure metals and alloys give Joule heating. Nevertheless, it is shown that the device can be used in the range 1-10 mK and for fields from 20 mT to 1 T. {\copyright} 1988 Plenum Publishing Corporation.},
Author = {Ruesink, W. and Harrison, J.P. and Sachrajda, A.},
Document_Type = {Article},
Journal = {Journal of Low Temperature Physics},
Number = {3-4},
Pages = {393-411},
Source = {Scopus},
Title = {The vibrating wire viscometer as a magnetic field-independent3He thermometer},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0023962490&partnerID=40&md5=9052769941e93a9fcba25f266409b6f7},
Volume = {70},
Year = {1988},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0023962490&partnerID=40&md5=9052769941e93a9fcba25f266409b6f7}}