Équipe de Recherche en Physique de l'Information Quantique


author = {Santavicca, D.F. , Reulet, B. , Karasik, B.S. , Pereverzev, S.V. , Olaya, D. , Gershenson, M.E. , Frunzio, L. , Prober, D.E. },
title = {Characterization of terahertz single-photon-sensitive bolometric detectors using a pulsed microwave technique},
journal = {AIP Conference Proceedings},
year = {2009},
volume = {1185},
pages = {72-75},
note = {cited By (since 1996) 0},
url = {http://www.scopus.com/inward/record.url?eid = 2-s2.0-74349093442&partnerID = 40&md5 = a0487ce508f9a578d762fafa68db2eab},
affiliation = {Departments of Applied Physics and Physics, Yale University, New Haven, CT 06520-8284, United States; Laboratoire de Physique des Solides, Universite Paris-Sud, 91405 Orsay, France; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States; Department of Physics, Rutgers University, Piscataway, NJ 08854, United States},
abstract = {We describe a technique for characterizing bolometric detectors that have sufficient sensitivity to count single terahertz photons. The device is isolated from infrared blackbody radiation and a single terahertz photon is simulated by a fast microwave pulse, where the absorbed energy of the pulse is equal to the photon energy. We have employed this technique to characterize bolometric detectors consisting of a superconducting titanium nanobridge with niobium contacts. Present devices have Tc, = 0.3 K and a measured intrinsic energy resolution of approximately 6 terahertz fullwidth at half-maximum, near the predicted value due to intrinsic thermal fluctuation noise, with a time constant of 2μis. An intrinsic energy resolution of 1 terahertz should be achievable by reducing the volume of the titanium nanobridge. Such a detector has important applications in future space-based terahertz astronomy missions. 2009 American Institute of Physics.},
author_keywords = {Calorimeter; Energy resolution; Single-photon detector; Superconducting bolometer; Terahertz},
document_type = {Conference Paper},
source = {Scopus}}