Équipe de Recherche en Physique de l'Information Quantique


author = {D Senechal and D Perez and M Pioro-Ladriere},
journal = {Phys Rev Lett},
title = {Spectral weight of the Hubbard model through cluster perturbation theory},
abstract = {We calculate the spectral weight of the one- and two-dimensional Hubbard models by performing exact diagonalizations of finite clusters and treating intercluster hopping with perturbation theory. Even with relatively modest clusters (e.g., 12 sites), the spectra thus obtained give an accurate description of the exact results. Spin-charge separation (i.e., an extended spectral weight bounded by singularities dispersing with wave vector) is clearly recognized in the one-dimensional Hubbard model, and so is extended spectral weight in the two-dimensional Hubbard model. PACS numbers: 71.27.+ a, 71.10.Fd. 71.10.Pm, 71.15.Pd.},
affiliation = {Univ Sherbrooke, Ctr Rech Proprietes Elect Mat Avances, Sherbrooke, PQ J1K 2R1, Canada},
number = {3},
pages = {522--525},
volume = {84},
year = {2000},
month = {Jan},
language = {English},
keywords = {Superconductors, Correlated Electrons, Dispersion, Spin-Charge Separation},
date-added = {2010-05-14 10:38:36 -0400},
date-modified = {2010-05-14 10:38:36 -0400},
pmid = {000084787300032},
uri = {papers://2218479D-7AA1-43D5-8E9E-4EF38C7D1379/Paper/p768},
rating = {0}}