%% EPIQ - Search - 2011
%% 2020-06-05
@ARTICLE{Lang2011,
author={ C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J.M. Fink, A.A. Abdumalikov, M. Baur, S. Filipp, M.P. Da Silva, A. Blais, A. Wallraff},
title={Observation of resonant photon blockade at microwave frequencies using correlation function measurements},
journal={Phys. Rev. Lett.},
year={2011},
volume={106},
number={24},
pages={243601},
document_type={Article},
local-url = {Lang2011.pdf}}
@ARTICLE{Bozyigit2011,
author={ D. Bozyigit, C. Lang, L. Steffen, J.M. Fink, C. Eichler, M. Baur, R. Bianchetti, P.J. Leek, S. Filipp, A. Wallraff, M.P. Da Silva, A. Blais},
title={Correlation measurements of individual microwave photons emitted from a symmetric cavity},
journal={Journal of Physics: Conference Series},
year={2011},
volume={264},
number={1},
pages={012024},
document_type={Conference Paper},
local-url = {Bozyigit2011.pdf}}
@ARTICLE{Bozyigit2011154,
author={ D. Bozyigit, C. Lang, L. Steffen, J.M. Fink, C. Eichler, M. Baur, R. Bianchetti, P.J. Leek, S. Filipp, M.P. Da Silva, A. Blais, A. Wallraff},
title={Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors},
journal={Nature Physics},
year={2011},
volume={7},
number={2},
pages={154-158},
document_type={Article},
local-url = {Bozyigit2011154.pdf}}
@ARTICLE{Ong2011,
author={ F.R. Ong, M. Boissonneault, F. Mallet, A. Palacios-Laloy, A. Dewes, A.C. Doherty, A. Blais, P. Bertet, D. Vion, D. Esteve},
title={Circuit QED with a nonlinear resonator: Ac-stark shift and dephasing},
journal={Phys. Rev. Lett.},
year={2011},
volume={106},
number={16},
pages={167002},
document_type={Article},
local-url = {Ong2011.pdf}}
@ARTICLE{Gambetta2011,
author={ J.M. Gambetta, A.A. Houck, A. Blais},
title={Superconducting qubit with purcell protection and tunable coupling},
journal={Phys. Rev. Lett.},
year={2011},
volume={106},
number={3},
pages={030502},
document_type={Article},
local-url = {Gambetta2011.pdf}}
@article{blais2011,
title = {Superconductivity-based artificial atoms for quantum information},
author = {A. Blais},
year = {2011},
journal = {Physics in Canada},
pages = {123},
volume = {67},
local-url = {blais2011.pdf}}
@conference{Branchaud2011837,
Abstract = {An experimental study of graphene nanoconstrictions and dots has been performed. Size scales of the fluctuations within these devices are extracted from transport measurements. These sizes are found to be roughly the same size as the constrictions and dots themselves. {\copyright} 2011 American Institute of Physics.},
Author = {Branchaud, S. and Kam, A. and Zawadzki, P. and Sachrajda, A.S.},
Document_Type = {Conference Paper},
Journal = {AIP Conference Proceedings},
Pages = {837-838},
Source = {Scopus},
Title = {Towards graphene based spin qubits},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84855487113&partnerID=40&md5=c9772ecc102ae48fda317a1138b1ac77},
Volume = {1399},
Year = {2011},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84855487113&partnerID=40&md5=c9772ecc102ae48fda317a1138b1ac77}}
@article{PhysRevLett.107.146801,
doi = {10.1103/PhysRevLett.107.146801},
month = {Sep},
issue = {14},
author = {Brunner, R. and Shin, Y.-S. and Obata, T. and Pioro-Ladrière, M. and Kubo, T. and Yoshida, K. and Taniyama, T. and Tokura, Y. and Tarucha, S.},
year = {2011},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.107.146801},
publisher = {American Physical Society},
title = {Two-Qubit Gate of Combined Single-Spin Rotation and Interdot Spin Exchange in a Double Quantum Dot},
pages = {146801},
journal = {Phys. Rev. Lett.},
volume = {107},
numpages = {4}}
@article{PQSV11a,
Author = {David Poulin and Angie Quarry and Rolando D. Somma and Frank Verstraete},
Eprint = {arXiv:1102.1360},
Journal = {Phys. Rev. Lett.},
Volume = {106},
Pages = {170501},
Title = {Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space},
Local-Url = {PQSV11b1.pdf},
Year = {2011},
Abstract = {We consider the manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, and showthat it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time. We establish this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a well-known counting argument. This also demonstrates that a computational model based on arbitrarily}}
@article{PH11a,
Abstract = {We present a lower bound for the free energy of a quantum many-body system at finite temperature. This lower bound is expressed as a convex optimization problem with linear constraints, and is derived using strong subadditivity of von Neumann entropy and a relaxation of the consistency condition of local density operators. The dual to this minimization problem leads to a set of quantum belief propagation equations, thus providing a firm theoretical foundation to that approach. The minimization problem is numerically tractable, and we find good agreement with quantum Monte Carlo for the spin-1/2 Heisenberg anti-ferromagnet in two dimensions. This lower bound complements other variational upper bounds. We discuss applications to Hamiltonian complexity theory and give a generalization of the structure theorem to trees in an appendix.},
Author = {David Poulin and Matthew B. Hastings},
Eprint = {arXiv:1012.2050},
Journal = {Phys. Rev. Lett},
Pages = {080403},
Title = {Markov entropy decomposition: a variational dual for quantum belief propagation},
Volume = {106},
Year = {2011},
local-url = {PH11b1.pdf}}
@article{PhysRevA.84.043832,
title = {Dissipation and ultrastrong coupling in circuit QED},
month = {Oct},
doi = {10.1103/PhysRevA.84.043832},
author = {F. Beaudoin, J.M. Gambetta and A. Blais},
year = {2011},
issue = {4},
url = {http://link.aps.org/doi/10.1103/PhysRevA.84.043832},
numpages = {15},
journal = {Phys. Rev. A},
publisher = {American Physical Society},
pages = {043832},
volume = {84},
local-url = {PhysRevA.84.043832.pdf}}
@article{Granger2011,
Abstract = {We study the electron transport properties of gated quantum dots formed in InGaAs/InP quantum well structures grown by chemical-beam epitaxy on prepatterned substrates. Quantum dots form directly underneath narrow gates due to potential fluctuations. We measure the Coulomb-blockade diamonds in the few-electron regime of a single dot and observe photon-assisted tunneling peaks under microwave irradiation. A singlet-triplet transition at high magnetic field and Coulomb-blockade in the quantum Hall regime are also observed. {\copyright} 2011 American Institute of Physics.},
Art_Number = {132107},
Author = {Granger, G. and Studenikin, S.A. and Kam, A. and Sachrajda, A.S. and Poole, P.J.},
Document_Type = {Article},
Journal = {Applied Physics Letters},
Number = {13},
Source = {Scopus},
Title = {Few-electron quantum dots in InGaAs quantum wells: Role of fluctuations},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-79953745487&partnerID=40&md5=7537c78858db0081dad16cfc63a592ec},
Volume = {98},
Year = {2011},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-79953745487&partnerID=40&md5=7537c78858db0081dad16cfc63a592ec}}
@article{Jeske:2011,
author = {J. Jeske, J. H. Cole, C. Mueller, M. Marthaler, and G. Sch{\"o}n},
title = {Dual-probe decoherence microscopy: Probing pockets of coherence in a decohering environment},
journal = {New Journal of Physics},
year = {2011},
volume = {14},
month = {oct},
doi = {10.1088/1367-2630/14/2/023013},
abstract = {We study the use of a pair of qubits as a decoherence probe of a nontrivial environment. This dual-probe configuration is modelled by three two- level systems (TLSs), which are coupled in a chain in which the middle system represents an environmental TLS. This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore, we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS that couples to two qubits at once.},
eprint = {1110.1945},
url = {http://iopscience.iop.org/1367-2630/14/2/023013/},
local-url = {DualProbe.pdf}}
@article{reulet2011aa,
Year = {2011},
Abstract = {},
title = {Measurements of the Third Cumulant in Quantum Shot Noise at High Frequency},
author = {Julien Gabelli and Bertrand Reulet},
journal = {Proceedings of the 21st International Conference on Noise and Fluctuations (ICNF2011), IEEE Digital Library},
pages = {329-331},
address = {Toronto, Canada}}
@article{TOVP11a,
Year = {2011},
Abstract = {The original motivation to build a quantum computer came from
Feynman, who imagined a machine capable of simulating generic
quantum mechanical systems—a task that is believed to be intractable
for classical computers. Such a machine could have farreaching
applications in the simulation of many-body quantum
physics in condensed-matter, chemical and high-energy systems.
Part of Feynman’s challenge was met by Lloyd, who showed how to
approximately decompose the time evolution operator of interacting
quantum particles into a short sequence of elementary gates,
suitable for operation on a quantum computer. However, this left
open the problem of how to simulate the equilibrium and static
properties of quantum systems. This requires the preparation of
ground and Gibbs states on a quantum computer. For classical
systems, this problem is solved by the ubiquitous Metropolis algorithm,
a method that has basically acquired a monopoly on the
simulation of interacting particles. Here we demonstrate how to
implement a quantum version of the Metropolis algorithm. This
algorithm permits sampling directly from the eigenstates of the
Hamiltonian, and thus evades the sign problem present in classical
simulations. A small-scale implementation of this algorithm
should be achievable with today’s technology.},
author = {K. Temme and T.J. Osborne and K. Vollbrecht and David Poulin and F. Verstraete},
title = {Quantum Metropolis Sampling},
journal = {Nature},
volume = {471},
pages = {87},
month = {March},
eprint = {arXiv:0911.3635},
local-url = {TOVP11a.pdf}}
@article{SLP11a,
Abstract = {Quantum tomography is the main method used to assess the quality of quantum information processing devices. However, the amount of resources needed for quantum tomography is exponential in the device size. Part of the problem is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the fidelity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a significant reduction in resources compared to tomography. In particular, we demonstrate that fidelity can be estimated from a number of simple experiments that is independent of the system size, removing an important roadblock for the experimental study of larger quantum information processing units.},
Author = {Marcus P. {da Silva} and Olivier Landon-Cardinal and David Poulin},
Eprint = {arXiv:1104.3835},
Journal = {Phys. Rev. Lett.},
Pages = {210404},
Title = {Practical characterization of quantum devices without tomography},
Volume = {107},
Year = {2011},
Local-url = {dLP11a1.pdf}}
@inbook{Bertet2001,
Year = {2011},
Abstract = {},
author = {P. Bertet, F. R. Ong, M. Boissonneault, A. Bolduc, F. Mallet, A. Doherty, A. Blais, D. Vion and D. Esteve},
title = {Circuit quantum electrodynamics with a nonlinear resonator},
editor = {Mark Dykman},
booktitle = {Fluctuating Nonlinear Oscillators},
publisher = {Oxford University Press},
note = {To appear},
local-url = {Bertet2001.pdf}}
@article{COHE CONTROL,
Year = {2011},
Abstract = {},
author = {S. Tarucha, T. Obata, M. Pioro-Ladriere, R. Brunner, Y. Shin, T. Kubo, Y. Tokura},
title = {Coherent Control of Two Individual Electron Spins and Influence of Hyperfine Coupling in a Double},
journal = {Journal of Physics: Conf. Ser. 334, 012009}}
@article{Smith2011,
Abstract = {We report an investigation of quantum Hall induced currents by simultaneous measurements of their magnetic moment and their effect on the conductance of a quantum point contact (QPC). Correlation of features in the noise of the induced currents, caused by the breakdown of the quantum Hall effect, for the two types of measurements provides conclusive proof of the common origin of the two effects. Common features in the magnetic moment and QPC resistance at Landau-level filling factors V = 1, 2 and 4 and their similar temperature and nonlinear sweep-rate dependences support this conclusion. In contrast, there is a distinct difference in the way the induced currents decay with time when the sweeping field halts at integer filling factor as detected by the two types of measurement. We attribute this difference to the fact that, while both effects are sensitive to the magnitude of the induced current, the QPC resistance is also sensitive to the proximity of the current to the QPC split gate, and we develop a model that describes semi-quantitatively the effects we observe. Although it is clearly demonstrated that induced currents affect the electrostatics of a QPC, the reverse effect, the QPC influencing the induced current, is not observed. {\copyright} IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.},
Art_Number = {123020},
Author = {Smith, M.J. and Williams, C.D.H. and Shytov, A. and Usher, A. and Sachrajda, A.S. and Kam, A. and Wasilewski, Z.R.},
Document_Type = {Article},
Journal = {New Journal of Physics},
Source = {Scopus},
Title = {Quantum Hall induced currents and the magnetoresistance of a quantum point contact},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84855416208&partnerID=40&md5=6a3ce0d2c9dafeaf734a3ce8ce37b9ec},
Volume = {13},
Year = {2011},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84855416208&partnerID=40&md5=6a3ce0d2c9dafeaf734a3ce8ce37b9ec}}
@conference{Studenikin2011607,
Abstract = {We report on the observation and study of quantum transport diamonds and Zero Current Anomaly (ZCA) in the non-linear differential resistance r xx=dV xx/dI of high-mobility In xGa 1-xAs/InP structures in quantizing magnetic fields. The diamond-shaped features are observed in the grey-scale plots of r xx as a function of magnetic field and dc current. Spin diamonds are revealed at higher magnetic fields when spin levels at odd filling factors are well resolved. Unexpectedly, a narrow dip is observed in differential resistance vs. current at I dc=0 in quantizing magnetic fields, which we refer to as the ZCA effect. {\copyright} 2011 American Institute of Physics.},
Author = {Studenikin, S.A. and Granger, G. and Sachrajda, A.S. and Kam, A. and Poole, P.J.},
Document_Type = {Conference Paper},
Journal = {AIP Conference Proceedings},
Pages = {607-608},
Source = {Scopus},
Title = {Zero current anomaly in non-linear transport of high-mobility InGaAs/InP 2DEG structures in quantizing magnetic fields},
Url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84855493545&partnerID=40&md5=48acd08d3f106d50b4275a3f9df52803},
Volume = {1399},
Year = {2011},
Bdsk-Url-1 = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84855493545&partnerID=40&md5=48acd08d3f106d50b4275a3f9df52803}}