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In dispersive readout schemes, qubit-induced nonlinearity typically limits the measurement fidelity by

reducing the signal-to-noise ratio (SNR) when the measurement power is increased. Contrary to seeing the

nonlinearity as a problem, here we propose to use it to our advantage in a regime where it can increase the

SNR. We show analytically that such a regime exists if the qubit has a many-level structure. We also show

how this physics can account for the high-fidelity avalanchelike measurement recently reported by Reed

et al. [arXiv:1004.4323v1].
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Quantum measurements are crucial to all quantum in-
formation protocols. In solid-state systems, readout can be
performed by connecting the qubits to noisy measure-
ment electronics, such as single-electron transistors [1].
Dispersive readouts based on coupling qubits to high-Q
resonators are, however, much less disruptive as all of the
energy is dissipated away from the qubit [2]. This type of
measurement leads to quantum nondemolition (QND)
readout. Unfortunately, so far the typical signal-to-noise
ratio (SNR) has been relatively low, requiring some-
times up to 106 repetitions of the experiment to average
out the noise added by the amplifiers [3,4]. Increasing the
qubit-resonator coupling is one approach to improve
the SNR as it increases the amount of information about
the qubit state carried by the measurement photons. This is,
however, at the cost of an increased Purcell decay rate [5],
which decreases the useful integration time and in turn
the SNR. Another approach has been to exploit bifurcation
in a nonlinear resonator [6]. This has already led to the
experimental demonstration [7] of single-shot readout
of a transmon-type superconducting qubit [8]. Very
recently, Reed et al. have also shown that single-shot
measurement of a transmon qubit can also be realized in
a linear resonator but working at very large measurement
power [9].

Motivated by these results, we study how the non-
linearity induced by the qubit in a linear resonator can
lead to improvement of the measurement. We first explore
the low driving power regime before considering the
high-power regime studied in Ref. [9]. Using a simple
model, we find qualitative agreement with these experi-
mental results.

For simplicity, we first focus on a two-level system
(TLS), of states labeled fj0i; j1ig, dispersively coupled to
a microwave resonator. This system is well described by
the Jaynes-Cummings Hamiltonian, expressed here in the
dispersive basis (@ ¼ 1) [10]

H ¼ !rN þ!a ��½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2ðN þ�11Þ

p �
2

�z

� ð!r þ �ÞN þ ~!a

2
�z þ �N�z þ �N2�z; (1)

where �ij ¼ jiihjj for the TLS, and N ¼ aya. In this

expression, !r is the resonator frequency and !a ( ~!a)
the bare (Lamb-shifted) TLS transition frequency. The
qubit-resonator coupling is characterized by � ¼ g2ð1�
�2Þ=�, the dispersive coupling strength, and � ¼ �g�3 is
a Kerr-type nonlinearity, with g the bare qubit-resonator
coupling strength, � ¼ !a �!r the qubit-resonator de-
tuning, and � ¼ �g=�. The second line of Eq. (1) is valid
to fourth order in � and at photon numbers �n � ncrit,
where ncrit ¼ 1=4�2 is the critical photon number [2].
The limit � ! 0 of the second line of Eq. (1) is the standard
linear dispersive Hamiltonian [11].
In this regime, because of the qubit-dependent pull of the

resonator frequency ��z, a nearly resonant drive on the
resonator will displace the resonator’s initial vacuum
state to a qubit-state dependent coherent state j�i¼0;1i.
Homodyne measurement of the transmitted or reflected
signal can then resolve these pointer states, and hence the
qubit states. In Ref. [12], it was shown that the SNR of such
a homodyne measurement for an integration time T1 ¼
1=�1 is given by SNR ¼ ��j�1 � �0j2=�1, where � is
the resonator decay rate and � is the measurement effi-
ciency. The SNR reaches its maximal value ðSNRÞmax ¼
4� �n�=�1, for the optimal choice � ¼ 2�, where �n is the
average number of photons. In this limit, the dispersive
model Eq. (1) thus predicts that the SNR should increase
linearly with the number of measurement photons �n.
Unfortunately, this linear increase of the SNR is not

observed experimentally and this can, at least partially,
be explained by the fourth order corrections in
Eq. (1). To this order of approximation, an increase of
the photon number leads to a reduction of the cavity pull
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g�½1� �2ðayaþ 1Þ��z and hence to a loss of distinguish-
ability of the pointer states [10]. Thus, the prospects for
improving the SNR in homodyne measurement of a
TLS dispersively coupled to a resonator look rather
unpromising.

Fortunately, most superconducting qubits are well ap-
proximated by many-level systems (MLS), often with only
weak anharmonicity [8,13–15], rather than by TLS. As is
apparent below, it is possible in this situation for � and � to
have the same sign, which yields an increase of the cavity
pull with �n and hence an improved SNR.

As a good description of a generic superconducting
qubit, we thus consider anM-level system, of states labeled
fj0i; . . . ; jM� 1ig and with the first two states acting as
logical states. The Hamiltonian of the MLS-resonator
system takes the generalized Jaynes-Cummings form
Hs ¼ H0 þ

P
M�2
i¼0 giðay�i;iþ1 þ a�iþ1;iÞ, where H0 ¼

!ra
yaþP

M�1
i¼0 !i�ii is the free Hamiltonian, !i the fre-

quency of level jii, and gi the coupling strength between the
resonator mode a and the i $ iþ 1 MLS transition.

In the dispersive regime, where 4hayaiðgi=�iÞ2 � 1
with �i ¼ ð!iþ1 �!iÞ �!r, it is convenient to approxi-
mately diagonalizeHs. Following Ref. [10] where this was
done for a TLS, we obtain to fourth order in �i ¼ �gi=�i

HD
s � ~H0 þ

XM�1

i¼0

Si�i;ia
yaþ XM�1

i¼0

Ki�i;iðayaÞ2; (2)

where ~H0 includes the Lamb shifts. In this expression, we
have defined the ac-Stark (Si) and Kerr (Ki) coefficients

Si ¼½�i�1ð1��2
i Þ��ið1��2

i�1Þ�2�i�1�
2
i�1�

þ1

4
ð9�i�2�

2
i�1�3�i�1�

2
i�2��i�

2
iþ1þ3�iþ1�

2
i Þ

�gð2Þi �ð2Þ
i �3gð2Þi�2�

ð2Þ
i�2; (3a)

Ki ¼ 1

4
ð3�i�2�

2
i�1��i�1�

2
i�2þ�i�

2
iþ1�3�iþ1�

2
i Þ

þð�i��i�1Þð�2
i þ�2

i�1Þþgð2Þi �ð2Þ
i �gð2Þi�2�

ð2Þ
i�2; (3b)

with �i ¼ g2i =�i, gð2Þi ¼ �i�iþ1ð�iþ1 � �iÞ, �ð2Þ
i ¼

�gð2Þi =ð�iþ1 þ �iÞ, and �i ¼ �i ¼ 0, for i =2 ½0;M� 2�.
For M ¼ 2, S0 ¼ ��0, S1 ¼ �0ð1� 2�2

0Þ, and K0 ¼
�K1 ¼ �0�

2
0, reproducing Eq. (1). The crucial feature of

these expressions is that, contrary to a TLS, K0 � �K1 for
a MLS. Using this state-dependent nonlinearity, we now
show how to improve the readout in two ways.

Weak driving limit.—From the dispersive model Eq. (2),
it is possible to evaluate the difference in cavity pull 	 for
levels j0i and j1i, which we are interested in distinguishing
in a measurement. It takes the form 	 ¼ �0 þ � 0 �n, with
�n ¼ hayai and where we have defined �0 ¼ S1 � S0 and
� 0 ¼ K1 � K0. We note that, although we are focusing on
the first two levels, the presence of higher MLS levels is
important. This is apparent in the expressions for Si andKi,
which involve states up to jiþ 2i.

Figure 1 shows �0 and � 0 obtained from Eq. (3) as
a function of !r for a MLS with M ¼ 2 [1(a)] and M ¼
6 [1(b)] levels. Figure 1(c) has been obtained from exact
diagonalization of Hs for M ¼ 6. For M ¼ 2, sgnð�0Þ ¼
sgnð� 0Þ only in regions where the dispersive approximation
breaks down, while for M> 2 this is possible in the dis-
persive regime (see the caption of Fig. 1). The numerical
results illustrate that the analytical expressions are good
approximations. We note that, while these results apply to
any MLS, for concreteness we have chosen here para-
meters corresponding to a transmon qubit [8].
Figure 2(a) shows the cavity pull 	 for a cavity fre-

quency chosen in the region where sgnð�0Þ ¼ sgnð� 0Þ (full
black line) and outside of this optimal area (dotted red
line). These results are compared to the result of the second
order approximation (dashed blue line). As expected, the
cavity pull increases with �n under the appropriate choice
of parameters. Figures 2(b)–2(d) show the corresponding
SNR, using the same color scheme, for �=2�0 ¼ 0:5 [2(b)],
1 [2(c)], and 1.5 [2(d)], with �=2�0 ¼ 1 being the optimal
choice [12]. Because of the increase of the cavity pull with
�n, the full black line is always above the dotted red one. For
�=2�0 ¼ 1, an improvement of nearly 100% is expected at
large photon numbers. Biasing the qubit above the reso-
nator’s fundamental frequency, as is suggested here, can
lead to an increase of the Purcell decay. This can, however,
be strongly reduced by a small change of design [16].
Finally, one could also tune the system to a point where
�0 and � 0 have the same sign at the moment of measure-
ment using a tunable resonator [17,18].
Strong driving limit.—The results obtained so far relied

on Eq. (2), which is valid only below ncrit. However, the
nontrivial state dependence of the nonlinearity Ki should
extend well beyond the dispersive regime. To explore this,

FIG. 1 (color online). Analytical (a),(b) and numerical (c)
ac-Stark �0 (black line) and Kerr shifts � 0 [lighter (red) line]
for a transmon qubit taking into account M ¼ 2 (a) and M ¼ 6
levels (b),(c). The parameters are chosen such that
ð!10; !21; g0Þ=2
 ¼ ð6000; 5750; 100Þ MHz. The line changes
from dotted to full when �0 or � 0 passes from negative to positive
values. Vertical blue dotted lines indicate transitions !10, !21,
and !32. Lighter (green) shading indicates regions of interest,
while darker (red) shading indicates regions where the dispersive
model breaks down even at low-photon number. Values of �0 and
� 0 obtained numerically are not plotted close to divergences.
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we take advantage of the block diagonal structure of the
Hamiltonian Hs. There each block of Hs corresponds to a
fixed number n of qubit-resonator excitations and is
spanned by En ¼ fjn; 0i; . . . ; jn�Mþ 1;M� 1ig. With
the relevant M being at most �10 in practice, we can
diagonalize each block numerically (or analytically for
M � 4) for arbitrary n. In this way, we obtain the dressed
energies �En;i and states jn; ii, where �En;i is the energy of

the eigenstate closest to a Fock state with n photons
and MLS state jii. From these expressions, we find the
effective resonator frequency !riðnÞ ¼ �Enþ1;i � �En;i. This

frequency depends in a nonlinear way on the MLS
state-dependent average photon number ni. In steady state
and in the absence of qubit transitions, ni is given by the
measurement drive amplitude � and frequency detuning
relative to the effective resonator frequency

nið�;!mÞ ¼ �2

½!riðniÞ �!m�2 þ ½�=2�2 ; (4)

with !m the measurement frequency. We solve Eq. (4)
iteratively to find ni and !ri as a function of � and !m.

In Fig. 3, both !ri [3(a)–3(c)] and ni [3(d)–3(f)] are
plotted as a function of measurement power for M ¼
2; 3; 6, respectively. This is done for !m ¼ !r as in
Ref. [9]. For all values of M, the effective resonator fre-
quency approaches its bare value!r at large power. This is

expected because, at this point, hNi � h ffiffiffiffi
N

p i in Eq. (1) and
the cavity responds classically [19]. Since K0 ¼ �K1 for
M ¼ 2, this classical crossover occurs at the same input
power for both qubit states. We note that this crossover
happens in an avalanche manner, with each additional
photon bringing !riðniÞ closer to !r and facilitating the
addition of more photons. As can be seen in Figs. 3(b) and
3(c), for M ¼ 3 this avalanche occurs at a state-dependent
power, the behavior changing only quantitatively for
M> 3. With !m ¼ !r, we thus expect an abrupt change

in the average photon number in the resonator at a power
that is MLS state dependent. This is illustrated in Fig. 3(f)
where for M ¼ 6 there is a range of �5 dB in measure-
ment power where n0 and n1 differ significantly and by as
much as �105 at the optimal driving power. This large
separation of the S curves, much larger than typical am-
plifier noise, leads to single-shot readout of the qubit [9].
As shown by the gray dashed line in Fig. 3(f), pumping the
1 $ 2 transition before readout [7,9] could also help the
measurement work at lower power. Finally, Fig. 4 shows
the full power versus measurement frequency dependence
of nið�;!mÞ obtained from Eq. (4). In this plot, the full
white lines correspond to !ri shown in Fig. 3(c). Although
Fig. 4 shows qualitative agreement with the results of
Ref. [9], a quantitative comparison would require proper
modeling of the 4-qubit device used in Ref. [9].
While the dispersive measurement at low-photon num-

ber of Fig. 2 is expected to be QND, this is not the case for

(a)

(b) (c) (d)

FIG. 2 (color online). Cavity pull 	 (a) and SNR (b)–(d), as a
function of the average number of photons. The parameters are
the same as in Fig. 1 with T1 ¼ 1 �s. Dashed blue lines
correspond to the second order approximation, for which the
cavity pull 2g2=� is constant. Full black lines (dotted red lines)
are obtained for !r=2
 ¼ 4515 (7660) MHz, corresponding to
ncrit � 55 (70) and sgnð�0Þ ¼ ð�Þsgnð� 0Þ. These frequencies are
chosen such that j�0j=2
 ¼ 2 MHz.

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 3 (color online). Effective resonator frequency !ri (a)–
(c) and mean photon number ni (d)–(f) for i ¼ 0 (full red lines),
i ¼ 1 (dotted blue lines), and i ¼ 2 [dashed gray lines, (c),(f)] as
a function of the measurement power. Panels (a),(d), (b),(e), and
(c),(f) are for M ¼ 2, 3, and 6, respectively. In (a)–(c), the
dashed green horizontal line is !r. The parameters are the
same as in Fig. 1. For clarity of presentation the panels have
different horizontal scales.

(a) (b)

FIG. 4 (color online). Mean photon number ni for i ¼ 0 (a)
and i ¼ 1 (b) as a function of the measurement frequency and
power. The full white lines are !riðniÞ for !m=2
 ¼ !r=2
 ¼
7 GHz. The solid red and dotted blue vertical lines indicate the
measurement frequency used in Fig. 3. The parameters are
the same as in Fig. 1. The horizontal dotted lines delimitate the
regime of measurement power where n1 � n0 is maximum.

PRL 105, 100504 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 SEPTEMBER 2010

100504-3



the single-shot high-power measurement. To evaluate the
QND character of this avalanche readout, we estimate how
the presence of the measurement photons changes the
relaxation and excitation rates of the qubit, as well as
causes leakage outside of the logical subspace fj0i; j1ig.
Figure 5(a) shows the Purcell decay rate ��=� �
jhn; 0jajn; 1ij2 and corresponding leakage rate �l

�=� �P
i�0;1jhn� i; ijajn; 1ij2 as a function of measurement

power. At low power, we find the expected result ��=� ¼
�2
0 [5]. For large photon number, nþ 1 � n, and losing a

photon through resonator decay does not significantly
change the qubit states. The Purcell decay rate thus goes
down with measurement power and does not affect the
QND character. To evaluate how the qubit dressing
changes pure relaxation, Fig. 5(b) shows the rates

for dressed decay �1d=�1 � jhn; 0j��jn; 1ij2 and leakage

�l
1d=�1 � P

i�0;1jhn� i; ij��jn; 1ij2, where �� ¼
P

M�2
i¼0

gi
g0
�i;iþ1. The participation of the higher transmon

states reduces the decay rate �1d from j1i to j0i as mea-
surement power is increased. However, decay of the bare
higher states increases the leakage rate, and the total error
rate �1d þ �l

1d is larger than �1.

Finally, dressed dephasing �d due to noise responsible
for dephasing of the bare qubit states can also cause
transitions between the dressed states [10,20]. For
concreteness, we consider dephasing due to charge noise
on a transmon, but the model can be adapted to any
source of dephasing. Following Ref. [10], this contribution

can be evaluated as �d=�’ � jhnþ 1; 0j�zjn; 1ij2Sð ��10Þ=
Sð1 HzÞ, where �z ¼

P
M�1
i¼0 �i;i�i=�1, with �i the charge

dispersion of level i [8] and Sð ��ijÞ the spectrum of

charge noise evaluated at the dressed qubit-resonator de-

tuning. In the same way, the leakage rate is �l
d=�’ �P

i�0;1jhnþ 1� i; ij�zjn; 1ij2Sð ��1iÞ=Sð1 HzÞ.
We note that, even assuming 1=f charge noise, which

would be 109 times smaller at 1 GHz than at 1 Hz, dressed
dephasing can be important for these large photon num-
bers. Indeed, for the transmon, the charge dispersion �i—
and therefore the susceptibility to charge noise—increases
exponentially with i, reaching �6=�1 � 106 for 6 levels.
Although a quantitative analysis requires a better under-
standing of the noise spectrum at microwave frequencies,
our numerical analysis with 1=f noise suggests �d=�’

ranging from 1 to 103 and �l
d=�’ from 10 to 104 depending

on the parameters and the number of levels.
The loss of the QND aspect in such a high-fidelity

readout is not expected to be an issue in the measurement
of the final state of a quantum algorithm. However, reduc-
tion in the QND character is problematic for tasks such as
measurement-based state preparation, quantum feedback
control and quantum error correction.

In summary, we have shown that for a qubit with
M> 2 levels dispersively coupled to a resonator, the
qubit-induced nonlinearity of the resonator depends in a

nontrivial way on the qubit state. This can be exploited to
increase the SNR ratio in a QND measurement at low-
photon number and captures the essential aspects of the
high-fidelity non-QND measurement recently reported [9].
We thank the Yale circuit QED team for discussion of

the results of Ref. [9] prior to publication. M. B. was
supported by NSERC; J.M.G. by CIFAR, MITACS,
MRI, and NSERC; A. B. by NSERC, the Alfred P. Sloan
Foundation, and CIFAR.
Note added.—Theoretical modeling of the high-fidelity

readout has also been reported by Bishop et al. (following
Letter) [21].
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(a)

(b)

FIG. 5 (color online). Qubit relaxation (full black lines) and
leakage rate (dashed blue lines) due to Purcell effect (a) and bare
qubit decay (b) as a function of the measurement power. The
dotted red line in (a) is the expected value for �� at low power.
The parameters are the same as in Fig. 1.
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