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Detection and manipulation of Majorana fermions in circuit QED
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Motivated by recent experimental progress towards the measurement and manipulation of Majorana fermions
with superconducting circuits, we propose a device interfacing Majorana fermions with circuit quantum
electrodynamics. The proposed circuit acts as a charge parity detector changing the resonance frequency of
a superconducting λ/4 resonator conditioned on the parity of charges on nearby gates. Operating at both charge
and flux sweet spots, this device is highly insensitive to environmental noise. It enables high-fidelity single-shot
quantum nondemolition readout of the state of a pair of Majorana fermions encoding a topologically protected
qubit. Additionally, the interaction permits the realization of an arbitrary phase gate on the topological qubit,
closing the loop for computational completeness. Away from the charge sweet spot, this device can be used as a
highly sensitive charge detector with a sensitivity better than 10−4e/

√
Hz and bandwidth larger than 1 MHz.
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I. INTRODUCTION

Pairs of Majorana fermions have been put forward as candi-
dates for topologically protected quantum computation,1,2 and
have attracted much attention from both theoretical and ex-
perimental groups.3–9 Experimental indications were recently
reported that the search for these fermions has been successful
in semiconductor wires on superconducting surfaces.6–9 In
these systems, selective gating of a strongly spin-orbit coupled
1D semiconductor on top of a superconducting substrate
and under the influence of a magnetic field allows the
nucleation and displacement of pairs of Majorana modes
at the endpoints of topologically nontrivial regions.3,4 Since
individual Majorana fermions are Ising anyons, pairs of these
fermions have been proposed as topologically protected qubits,
for which the majority of single- and two-qubit operations can
be performed via braiding.5 Importantly, the nonlocal fermion
defined by two Majorana end modes still carries the charge of
the underlying carriers, i.e., one electron charge.

On the other hand, superconductor based technology for
use in quantum computation has had tremendous success in
recent years.10–13 One well studied architecture is circuit quan-
tum electrodynamics (cQED),14,15 in which superconducting
qubits interact strongly with the electric or magnetic fields
of a superconducting resonator. In this area, much of the
recent progress is due to the development of high-fidelity,
quantum nondemolition (QND) qubit readout schemes,12,16–19

based on measurements of the qubit-state dependent resonator
frequencies.14 Since the nucleation of Majorana fermions
occurs on a standard BCS superconductor, it is natural to bridge
the gap between these topological excitations and cQED.

Previous authors have proposed to interface Majorana
fermions in semiconductor wires and cQED by coupling the
Majorana fermions to transmons20,21 or charge tuneable flux
qubits22,23 that are themselves coupled via Jaynes-Cummings
interaction to superconducting resonators. Additional propos-
als include coupling semiconductor wires to a superconducting
cavity in order to induce a photon-mediated effective interac-
tion between Majorana fermions24 or to generate squeezing
of the resonator field.25 It was also proposed to utilize the
4π -periodic Josephson effect in conjunction with a fluxonium

circuit for Majorana qubit detection.26 In many of these
proposals,20–23,26 the decoherence properties of the underlying
qubit used for the interaction to microwave photons are crucial
when trying to achieve fast readout. This is the case, for
example, for the top transmon,20 which during readout is
operated far from the noise-insensitive transmon regime.27

Here, we suggest a device for measurement and manipula-
tion of Majorana fermion qubits that is only weakly affected
by decoherence while still allowing fast QND readout. In
our design, the superconducting circuitry acts as a purely
passive element, with no internal dynamics which might be
influenced by relaxation or dephasing. Additionally, the device
is operating at sweet spots with respect to both charge as well as
flux, and is thus to first order insensitive to fluctuations in these
external parameters. Readout of the charge parity is achieved
by a standard measurement of the resonance frequency of
a superconducting transmission line resonator, which is here
conditioned on the state of a nearby Majorana fermion qubit.

The paper is structured as follows. Section II introduces
the principle idea of our proposal while Sec. III details how
this can be implemented with superconducting circuits and
presents the main result of this paper, namely the tuneability
of the transmission line mode frequency with applied charge.
Section IV is devoted to exploring the sensitivity of our design
to external perturbations and fabrication imperfections. We end
the paper with a short discussion and summary of the results.
Appendix details the derivation of the device Hamiltonian as
well as discusses the parameters necessary for experimental
realization. There, we also give details on the working of the
Aharonov-Casher effect in our proposal as well as discuss how
the same device can be used as a dynamical charge detector.

II. CHARGE-TUNEABLE INDUCTANCE

Our proposal is related to flux-tuneable microwave cavities
commonly used in cQED architectures,28 c.f. Fig. 1(a). There,
a λ/4-resonator is terminated to ground via a superconducting
quantum interference device (SQUID) loop that plays the
role of a flux-tuneable inductance. This change of inductance
modifies the electrical length of the resonator and in turn its
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FIG. 1. (Color online) Schematic illustration of the JCPM. (a) A superconducting λ/4 resonator is terminated to ground via a tuneable
inductance, in our proposal realized by the CMFQ, indicated here as a gray square. Measurement is realized via driving through the capacitive
port on the left and monitoring the reflected signal. The red lines indicate the current distribution for the first fundamental mode in the structure.
(b) Sketch of the CMFQ including a semiconductor wire network supporting Majorana fermions. The device itself consists of a flux qubit
symmetrically coupled to the two arms of a SQUID. Blue indicates superconducting wires interrupted by Josephson junctions in orange, the
grey area shows the surrounding superconducting ground planes. A semiconductor wire network is indicated as black lines with red parts
illustrating topologically nontrivial regions terminated by Majorana end modes in yellow. (c) Circuit diagram of the CMFQ including the
interaction region in black, modeled as a set of capacitors connected to voltage sources/charges. Boxes indicate Josephson junctions and the
different colors denote the SQUID (green) and flux qubit (blue) parts of the circuit. For ease of identification, the numbered red dots in (b) and
(c) indicate equivalent points in the circuit.

resonance frequency.28,29 This can be simply pictured as a stan-
dard LC resonator with an additional tuneable inductance. The
oscillator’s resonance frequency is then ωr = 1/

√
(L + LJ )C,

where LJ is the tuneable inductance. Changing LJ leads to a
change δωr in the resonator frequency ωr according to

δωr

ωr

= −1

2

δLJ

L + LJ

= −pL

2

δLJ

LJ

, (1)

where δLJ is the change in the tuneable inductance of the
circuit and pL = LJ /(L + LJ ) is the inductive participation
ratio. In the circuit of Fig. 1(a), this tuneable inductance can
be realized by a SQUID loop. In that case, the Josephson in-
ductance LJ ∝ 1/EJ , with EJ the Josephson energy, depends
on the magnetic flux threading the loop.30

In contrast to flux tuneable devices, we aim here at design-
ing a charge tuneable inductance. To this end, we make use of
the Aharonov-Casher (AC) effect, the charge-flux dual of the
Aharonov-Bohm effect in a superconducting flux qubit.31,32 As
discussed in more details in C, the AC effect can be important
in flux qubits because of the strong dependence of the tunneling
amplitude between different wells of the qubit potential energy.
In the charge-tuneable regime,32 there exist two competing
tunneling paths each of which will acquire a different phase
conditioned on the charges present on the qubit islands, i.e., the
small superconducting regions between the qubits Josephson
junctions. The AC effect is periodic in the two island charges
with a period of 2e, where e is the charge of a single electron,
and the maximal phase difference is achieved for a single
applied charge to either one of the islands. This allows to tune
the flux qubit’s transitions frequency with applied charges
or gate voltages.22,32,33 Because of the 2e periodicity, it can
serve as a natural detector of the charge parity on the qubit
islands.

To take advantage of this effect, we propose to mod-
ify the standard flux-tuneable resonator by including a
charge-sensitive flux qubit in the terminating SQUID of a

flux-tuneable λ/4 resonator. Our circuit provides a highly
symmetric coupling of the resonator to the qubit loop, and
leads to vanishing cross-coupling between excitations in the
resonator and in the qubit. On the other hand, as we will
show below, it results in a strong tuneability of the oscillator
resonance frequency as a function of the gate charge applied
to the qubit islands. The proposal can be broken down into two
parts, cf. Fig. 1. The first is a measurement circuit in which
the level splitting of a flux qubit is tuned by an applied charge,
something which we will refer to as a charge modulated flux
qubit (CMFQ) for simplicity. Details of the CMFQ as well
as its circuit diagram are depicted in Figs. 1(b) and 1(c). By
terminating a superconducting λ/4 resonator to ground via
the CMFQ, we arrive at the Josephson charge parity meter
(JCPM), illustrated in Fig. 1(a).

III. WORKING PRINCIPLE OF THE JCPM

As shown schematically in Fig. 1(b), the circuit consists
of two superconducting loops, one a SQUID loop with
two Josephson junctions, the other a flux qubit with three
junctions. These are inserted between the endpoint of a λ/4
transmission line resonator (indicated by the resonator center
pin arriving from the left) and the surrounding superconducting
ground planes (grey area). A network of semiconductor wires
supporting Majorana end modes is indicated on top of the
superconducting structure by the black lines. Topologically
nontrivial regions on the wire, represented by red areas and
terminated by Majorana end modes in yellow, can be moved
along the network via depletion gates (not shown).5,6 The
charge sensitive regions of the circuit are the two islands of
the flux qubit, indicated as (1) and (2) in Figs. 1(b) and 1(c).
They are the only parts of the circuit with an non-negligible
electrostatic energy, and are capacitively coupled to the nearby
semiconductor network to serve as charge sensors. This is
indicated by the coupling capacitors in Fig. 1(c). A pair of
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Majorana fermions close to one of the qubit islands will then
induce a charge on the islands depending on whether its parent
Dirac fermion mode is occupied or not.20,22 The two islands are
here completely equivalent. In the following, we will use the
upper one, marked as (1), for the measurement of the charge.
The lower island, marked as (2), might be biased with a static
voltage to improve the readout contrast, as illustrated by the
voltage source in Fig. 1(c).

In the absence of tunneling, the states of a flux qubit
near its flux sweet spot, �q = �0/2, are characterized by a
supercurrent flowing clockwise or counter-clockwise in the
loop.34 The circuit of Fig. 1(b) couples both current states
of the qubit loop symmetrically to currents flowing from
the resonator to ground via the CMFQ. As a result, Jaynes-
Cummings interaction between excitations in the resonator
and in the qubit is fully suppressed, since this interaction is
mediated by the qubit magnetic dipole moment.

Using the approach of Ref. 35, we derive the full
Hamiltonian of the JCPM in A. In particular, the coupling
between resonator and CMFQ degrees of freedom is described
by

ĤQ-Res = 2EJ,q sin ψ sin
ϕ+
2

cos
ϕ−
2

+ 2EJ,q (cos ψ − 1) cos
ϕ+
2

cos
ϕ−
2

, (2)

where ψ characterizes the resonator field at the input of the
CMFQ, and the phases ϕ+ and ϕ− describe the dynamics of
the flux qubit circuit. EJ,q is the Josephson energy of the two
identical outer qubit junctions. In the limit of infinite Josephson
energy of the SQUID junctions, EJ,s → ∞, the CMFQ would
act as a simple short to ground and thus we would find ψ = 0.
For our purposes, we choose large SQUID junctions EJ,s ,
such that ψ � 1, while still maintaining a significant inductive
participation ratio pL. In this limit, we expand Eq. (2) to obtain

ĤQ-Res ≈ 2EJ,q

(
ψ sin

ϕ+
2

cos
ϕ−
2

+ ψ2 cos
ϕ+
2

cos
ϕ−
2

)
.

(3)

The first term of this expression leads to coupling between
flux qubit excitations and resonator photons, while the second
term renormalizes the resonator frequency. This can be seen
more clearly by expressing ψ in terms of creation (a) and
annihilation (a†) operators of resonator photons, c.f. A, to find

ĤQ-Res ≈ (a† + a)
∑

i

gi(σ
(i)
+ + H.c.) + a†a

∑
i

δωr,i |i〉〈i|,

(4)

with |i〉 the ith eigenstates of the flux qubit and σ
(i)
+ = |i +

1〉〈i|. We have also defined the Jaynes-Cummings coupling
strength gi ∝ 〈i| sin ϕ+

2 cos ϕ−
2 |i + 1〉 + H.c. and the resonator

frequency shifts δωr,i ∝ 〈i| cos ϕ+
2 cos ϕ−

2 |i〉. Both depend on
the flux qubit eigenstates and are therefore sensitive to charges
on the flux qubit islands. In practice, the coupling gi is
relevant only if the resonator and flux qubit frequencies are
close to resonant, 
 = ωq − ωr � g, where ωq is the qubit
level splitting and ωr the resonator frequency. As we will
show in the following Sec. IV, for our circuit design and
parameters, we find g/
 < 10−2 at all operating points such
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FIG. 2. (Color online) Modulation of the resonator frequency pull
δωr as a function of charge qG,1 on the lower qubit island. The
magnetic field is fixed such that the device is at its flux sweet spot with
�q = �s = �0/2. The solid line is for a single charge on the upper
qubit island, qG,2 = e, the dashed line for qG,2 = 0. The parameters
are presented in B and are well within the standard toolbox of circuit
QED.

that no excitations are exchanged between resonator and flux
qubit. Additionally, thermal excitations of the flux qubit can
be neglected since the qubit transition frequency can easily
be chosen such that h̄ωq 
 kBT . As a result, and as will
be discussed in more details below, the flux qubit remains
at all time in its ground state and the main effect of the
CMFQ on the resonator is to change the resonator frequency
by δωr ≡ δωr,0. Importantly, given the dependence of the
qubit’s eigenstates on charge, the resonator frequency is then
modified by the presence or absence of a charge on the
flux qubit island. This is the effect that we propose to take
advantage of.

Figure 2 shows this resonator frequency pull δωr as a
function of gate charge qG,1 on the upper qubit island. The
parameters used here are similar to those of many recent
experiments and are presented in B. In particular, we choose a
flux bias point of �s = �q = �0/2 such that both the SQUID
and the flux qubit are at their respective flux sweet spots. In
this situation, they are both first-order insensitive to magnetic
flux variations. Incidentally, this means that the area of the
two corresponding loops should ideally be chosen to be of
equal size. The solid line in Fig. 2 corresponds to the case
where the CMFQ is biased with an additional voltage on
the lower island equivalent to a single charge on that island,
qG,2 = e. This choice increases the frequency pull but in
practice is not necessary. Indeed, as is made evident by the
dashed line, without this biasing the frequency pull is reduced
but still large enough to be easily detected. With biasing, we
find a frequency difference of the JCPM between different
charge parity states on the first island of δωr > 25 MHz.
This frequency change is well above the typical qubit-cavity
pull and photon relaxation rate κ in cQED making fast and
high-fidelity readout possible.17,18

Apart from allowing charge sensitivity, the inclusion of
the nonlinear Josephson elements in the resonator introduces
a small Kerr-type nonlinearity K to the resonator modes.35

This corresponds to adding a term ∼K(a†a)2 to the resonator
Hamiltonian. As is described in B, the magnitude of K will
also be modulated with the applied gate charge and it is of
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FIG. 3. (Color online) Level splitting ωq of the two lowest levels
of the qubit as a function of island charge qG,1 at the flux sweet spot,
�q = �s = �0/2, and for two different charge bias points, qG,2 =
e (solid) and qG,2 = 0 (dashed). The qubit energy is always well
above typical experimental temperatures of ∼20 mK, corresponding
to ∼400 MHz, and the probability of thermal excitation is negligible.
The bare resonator frequency is chosen to be 7.5 GHz as indicated by
the dotted line.

the right order of magnitude to be exploited in bifurcation
readout.16,36

IV. ROBUSTNESS TO NOISE AND
FABRICATION IMPERFECTIONS

As mentioned above, the design of the JCPM circuit ensures
that its degrees of freedom remain in their ground state, such
that it will act as a purely passive detector, with no internal
dynamics that might be susceptible to decoherence. In this
section, we provide more quantitative arguments supporting
this claim, and also discuss tolerance to noise and deviation
from optimal parameters.

Figure 3 shows the level splitting ωq of the two lowest
qubit levels as a function of the gate charge qG,1 for the
parameters given in B. The qubit splitting is well above the
thermal floor of typical cQED experiments, about ∼20 mK
corresponding to ∼400 MHz, over the whole range. Thus
thermal excitation of the flux qubit excited state can be safely
neglected for these parameters. Another possible source of
excitation for the flux qubit is exchange of energy with the
resonator caused by the first term of Eq. (4). The effect of this
term is however nonperturbative only when the qubit-resonator
detuning 
 = ωq − ωr is smaller than the coupling g. As
illustrated in Fig. 3, for the charge bias point qG,2 = 0, the
qubit transition frequency crosses the resonator frequency
∼7.5 GHz (black dotted line) at two charge bias points. In
practice, the resonator will be kept in its ground state during
all Majorana fermion manipulations (corresponding to charge
rearrangement on the qubit islands) and will only be populated
at the time of the readout. As a result, these crossings will not
cause excitations of the flux qubit, which will stay in its ground
state.

Figure 4 presents the ratio |g/
| as a function of qG,1. Apart
from the two divergences expected from the above discussion,
we find that the effect of the coupling g to be perturbative. In
particular, at the operating points for charge parity detection,
where qG,1 is either even or odd, we find g/
 < 10−2 for both
qG,2 = 0 (dashed line) and qG,2 = e (solid line). Interestingly,
the resonance condition which is not ideal for charge detection
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FIG. 4. (Color online) Ratio of coupling g to qubit-resonator
detuning 
 = ωq − ωr as a function of gate charge qG,1 at the
flux sweet spot of the device, �q = �s = �0/2. The solid line
corresponds to qG,2 = e (solid) while the dashed line to qG,2 = 0.
At the two operating points of the JCPM, qG,1 = 0 and qG,1 = e,
we find g/
 < 10−2 in both cases, demonstrating that the symmetric
circuit design leads to vanishing Jaynes-Cummings coupling between
qubit and resonator excitations.

could be used to facilitate entanglement between resonator
photons and topological Majorana fermion qubits.

We now focus on the sensitivity to fluctuations in the
external bias parameters, which we want to minimize. These
parameters are the two gate charges qG,1/2 and the two
fluxes �q/s . For parity measurement, the CMFQ is biased
at �q = �s = �0/2 and qG2 = e, while the charge qG,1 on
the upper qubit island is either an even or odd number of
electron charges. From Fig. 2, we see that the frequency
pull as a function of charge on the qubit islands is constant
around the operating points defined above. In Fig. 5, we
show the resonator frequency pull δωr as a function of the
total external flux �x = �q + �s . These figures illustrate
that the chosen bias conditions for external flux as well
as gate charges correspond to sweet spots in the frequency
dependence, rendering the device to first-order insensitive to
noise in both control parameters.
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FIG. 5. (Color online) Change in the JCPM resonance frequency
δωr as a function of the total external magnetic flux �x. We show
the modulation of ωr with respect to the state with zero charges on
both qubit islands. The solid line is for one of the JCPM working
points, with qG,1 = 0 and qG,2 = e, while the dashed line is for the
other working point, qG,1 = qG,2 = e. At flux bias �x = �0, we find
a sweet spot in both cases, where the resonance frequency ωr to first
order does not depend on flux anymore.
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FIG. 6. (Color online) Logarithmic plot of the resonator quality
factor Q as defined in the text with charge noise amplitudes of δq =
10−2 e and flux noise amplitude of δ�x = 10−4�0. We show the
quality factor as function of gate charge (top: equivalent for both
islands) and as function of total flux �x through the CMFQ (bottom).

To better quantify the resistance to noise, we define a quality
factor of the JCPM as

Q = ωr

⎛
⎝∑

x

∂ωr

∂x
δx +

∑
{x,y}

∂2ωr

∂x∂y
δxδy

⎞
⎠

−1

, (5)

where x and y denote the different noise sources, i.e., charge
noise on qG,1/2 and flux noise on �x with the noise amplitudes
δx and δy. This quality factor defines the robustness of
the resonator frequency against noise in any of the external
parameters and thus is a figure of merit for the stability of the
device operation. As illustrated in Fig. 6, for a conservative
choice of noise amplitudes of 10−2 e in charge37 and 10−4�0

in flux27 the quality factor is larger than 104 at all operating
points for charge parity detection and never falls below 103 for
all values of the input parameters.

It is also useful to define a signal-to-noise ratio (SNR) as
the quotient of the frequency shift (the signal) over the induced
frequency noise due to fluctuations in the bias parameters as
defined above. Defined this way, the SNR takes the form

SNR = |ωr (0,e) − ωr (e,e)|
|max(δωr )| ≈ 5 × 102, (6)

where ωr (qG,1,qG,2) is the JCPM resonance frequency con-
ditioned on the charges qG,1/2 on the flux qubit islands and
max(δωr ) is the maximum variation of ωr due to noise with the
same amplitudes as defined before. With this large value of the
SNR, we expect the frequency change to be readily measurable
using standard microwave measurement techniques.

Our scheme depends strongly on the fact that the symmetric
circuit design does not lead to any coupling between qubit
and resonator excitations. The vanishing direct coupling is
conditioned on the equality of the junctions parameters, most
importantly, the outer two qubit junctions. To confirm that
operation of the JCPM is not too sensitive on fabrication
imperfections, we performed simulations where the param-
eters of the qubits junctions, EJ,q and Cq varied randomly
inside a gaussian distribution with a standard deviation of

5%, a value which can be achieved for junction fabrication
on the same chip.38 Out of this ensemble of devices, more
than 60% showed parameters suitable for use as charge parity
detector, specifically large qubit splitting ωq > 2 GHz and
a relative variation in Josephson energy and thus inductance
δEJ /EJ > 5%. Relaxing the constraints on homogeneity of
the junctions to a standard deviation of 10%, we still find an
overall yield larger than 35%.

In the proposal of Ref. 5, a Majorana fermion network for
quantum computation is realized by a 2D grid of semicon-
ductor wires which are statically biased by a collection of
nearby voltage gates. The presence of additional electrostatic
gates close to the CMFQ circuit has the potential to disturb its
operation by inducing unwanted charges. However, their only
effect on the CMFQ will be to provide a set of constant charge
offsets during the measurement of the resonator frequency. In
this situation, the wire network will be biased such that a single
pair of Majorana fermions resides on top of one of the qubit
islands, with the rest of the network in the topologically trivial
state. In all other computational situation, when topologically
nontrivial regions are moved along the wires, the JCPM will
be inactive and therefore insensitive to the effect of the gates.
When setting up the device, the effect of such a network of
gates can then be calibrated for.

Finally, much interest was recently devoted to under-
standing the effect of quasiparticle induced relaxation and
dephasing in superconducting qubits. It was found that the
temperature dependence of the relaxation rate of transmon
qubits is readily explained when considering the effect of
interactions with quasiparticles tunneling across the qubits
Josephson junctions.39 In our case, since the circuit will be
resting in its ground state at all times, no energy is available
to be absorbed by the bath of quasiparticles. Additionally,
quasiparticle tunneling might lead to random frequency shifts
of the circuit energy levels, which in the case of qubits lead to
dephasing.40 This effect is small in charge insensitive devices
like our proposed circuit, which are operated at sweet spots
where it energy levels to first order do not depend on the
induced charge.27 However, if the charge noise present on
either one of the qubit islands reaches a significant fraction of
an electron charge, the frequency shift will be significant, and
the operation will be disrupted. This is a natural limitation of
our proposal stemming from the fact that the circuit is a charge
parity meter.

V. DISCUSSION AND SUMMARY

Similar to other proposals,20,22 the frequency shift asso-
ciated with the fermion parity on the qubit islands enables
us to close the loop towards computational completeness for
the topological qubits built of pairs of Majorana fermions.
A logical qubit can be defined using two pairs of Majorana
fermions, where the logical qubit states are |0〉l = |00〉 and
|1〉l = |11〉. Here, |0〉 and |1〉 = γi |0〉 describe the two ground
states of one of the Majorana fermion modes, with the
Majorana operators γi = γ

†
i , see Ref. 5. With this choice of

logical qubit, braiding operations can be used to effect two-
qubit gates as well as arbitrary π/2 single-qubit rotations.5,41

In order to be able to perform arbitrary quantum gates, we need
the additional capability to perform, e.g., a π/8-phase gate on
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MÜLLER, BOURASSA, AND BLAIS PHYSICAL REVIEW B 88, 235401 (2013)

the logical qubit. Due to the energy difference between states
of even and odd charge parity on the qubit islands, this can be
realized by simply moving one Majorana pair of the logical
qubit to be manipulated onto one of the flux qubit islands for
a time tGate, as described in more detail in Refs. 20 and 22.
Then the state |1〉l will be different in energy from |0〉l by
the frequency shift δωr induced in the resonator, and will then
acquire a relative dynamical phase. For an energy separation
between the two charge parity states of 25 MHz, as is realized
for the parameters used in Fig. 2, a π/8-phase gate takes only
tπ/8 = 2 ns. In contrast to earlier proposals,20–22 this gate when
using a JCPM is protected to first order from charge as well as
magnetic field fluctuations due to the operation of the JCPM
at a triple sweet spot.

The quality factor defined in Sec. IV allows us to give
a bound on the fidelity of such a phase gate effected by
employing the energy splitting induced by the JCPM between
different charge parity states. For simplicity, we assume that
the only error stems from random frequency fluctuation of
the resonator due to fluctuations in the external parameters
of the JCPM. In this case, we use for the fidelity F =
|〈ψ |φ〉|2, where |ψ〉 is the ideal state that we wanted to reach
and |φ〉 is the actual state reached during computation. We
assume a θ -phase gate, meaning an ideal final state of |ψ〉 =
(|0〉 + eiθ |1〉)/√2. The phase of the actually realized state |φ〉
deviates from θ by δθ = ωrtGate/Q such that for small δθ , we
find

F ≈ 1 − 1

4
δθ2 ≈ 1 − 10−7 , (7)

where in the last step, we assumed a π/8-phase gate and used
the same parameters as above.

It is interesting to also point out that the JCPM is not
limited to use with Majorana fermions in superconductor-
heterostructures. Any operation that has a use for high
fidelity QND charge-parity detection would be a natural
field of application.19,42–45 As an example, the JCPM could
be used as a quantum bus along the lines described in
Ref. 23 to entangle topological Majorana qubits and charge
qubits in semiconductor quantum dots or to transfer quantum
information between the two.

It can moreover be used as an ultrasensitive, high-
bandwidth dynamical charge detector. Indeed, when biased
in between the two charge sweet spots at a region of maximum
contrast and assuming standard homodyne reflection readout
of the resonator, we calculate a dynamical charge sensitivity
in the range of 10−4–10−6e/

√
Hz with a bandwidth between

1–100 MHz for the detection of fractional charges of δq =
10−6 e. As explained in more details in D, conservative
parameters and driving strengths have been used to obtain these
figures of merit that are comparable to current state-of-the-art
SET detectors.46

In conclusion, we propose a new device based on supercon-
ducting circuits modulating the frequency of a transmission-
line cavity as a function of an external charge. This device
allows charge-parity detection and as such enables readout and
manipulation of pairs of Majorana fermions as topologically
protected qubits. Due to its operation at a triple sweet spot, with
respect to two gate charges as well as applied magnetic flux,
it is highly robust against environmental noise, thus having

the potential to preserve the protected character of Majorana
fermion qubits for quantum computation.
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APPENDIX A: DERIVATION OF THE
JCPM HAMILTONIAN

In this section, we present the main steps in the derivation
of the JCPM’s Hamiltonian. The circuit diagram of the
charge-modulated inductance is shown in Fig. 7. To avoid
unnecessary clutter, the external gates connecting to the
islands are not represented in this figure. As can be seen in
Fig. 1(c), these gates connect to the red dots in Fig. 7. We
assume equal SQUID junctions with EJ,S1 = EJ,S2 = EJ,s

and CS1 = CS2 = CS . Similarly, we take the qubit junction
parameters as EJ,q1 = EJ,q2 = EJ,q and Cq1 = Cq2 = Cq

with the central “α junction” different by a factor α: Eqα
=

αEq and Cqα
= αCq . We make these assumptions mainly for

the sake of simplicity of notation, although it is somewhat
important to the performance of the device as has already been
discussed.

FIG. 7. (Color online) Circuit diagram of the CMFQ device
without the external gates. Crosses indicate the position of Josephson
junctions, which consists each of a nonlinear Josephson element as
well as a capacitor in parallel. The labels next to the each of the
elements correspond to the naming scheme used in the derivation of
the Lagrangian. The node fluxes at the red points will be the only
remaining dynamical variables and correspond to the fluxes on the
qubit islands. For the full circuit we will connect voltage gates to
these points, as in the inset in Fig. 1(c). The black connection on the
left leads to a distributed transmission line resonator and is at phase
ψ (whose dynamics are mainly determined by the resonator), and the
loops are threaded by the external fluxes �s and �q with the total
external flux �x = �s + �q .
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Following the approach outlined in Ref. 35, we find the
total Lagrangian of the charge modulated flux qubit to be

LCMFQ

= C̃Sψ̇
2 + 1

2
C̃q[(φ̇1 − ψ̇)2 + (φ̇2 − ψ̇)2 + (φ̇2 − φ̇1)2]

+EJ,s[cos ψ + cos(ψ + �s + �q)]

+EJ,q [cos(φ1 − ψ) + cos(φ2 − ψ)

+ cos(φ2 − φ1 + �q)], (A1)

where to simplify the notation in the main text, we have
defined the dimensionless phases ψ = (2π/�0) ψ̃ , φ1/2 =
(2π/�0) φ̃1/2, and �s/q = (2π/�0) �̃s/q and the renormal-
ized capacitances C̃s/q = (�0/2π )2Cs/q . For simplicity of this
calculation, we now assume that the total external flux through
both loops is a multiple of the flux quantum �0 = h/2e, such
that �x = �s + �q = 2πn, such that the SQUID is biased at
a flux sweet spot. With the substitution ϕ± = φ1 ± φ2, we can
then write the above Lagrangian as

LCMFQ

= (C̃S + C̃q)ψ̇2 − C̃qψ̇ϕ̇+ + 1

4
C̃q(ϕ̇2

+ + ϕ̇2
−)

+ 1

2
αC̃qϕ̇

2
− + 2EJ,s cos ψ

+ 2EJ,q

(
cos ψ cos

ϕ+
2

cos
ϕ−
2

+ sin ψ sin
ϕ+
2

cos
ϕ−
2

)
+αEJ,q

(
cos �q cos ϕ− + sin �q sin ϕ−

)
. (A2)

Here and above, we have assumed that the arms of the
SQUID have vanishing geometric inductance. Note that we
have taken �x = �s + �q = 2πn to simplify the presentation
of this particular expression. In general, we, however, kept
the dependence on the external flux. In the limit of infinite
Josephson energy of the SQUID junctions, EJ,s → ∞, the
whole CMFQ circuit acts as a simple short to ground, and
we find ψ = 0. Here, we assume large SQUID junctions EJ,s ,
such that ψ � 1, while still maintaining a significant inductive
participation ratio pL. As a result, the SQUID dynamics is
frozen and its main effect on the resonator is to act as an
effective nonlinear Josephson inductance of strength 2EJ,s .

The full Lagrangian for the JCPM, consisting of a λ/4
transmission-line resonator terminated by the CMFQ, is then
LJCPM = LRes0 + LCMFQ with the uncoupled resonator part

LRes0 =
∫ 0

−l
dx

(
�0

2π

)2{
C0

2
ψ̇(x)2 − 1

2L0
[∂xψ(x)]2

}
,

(A3)

where C0, L0 are capacitance and inductance per unit length
and l, the length of the resonator. Now, we can identify the
flux at the CMFQ-resonator port, indicated by the black dot
in Fig. 7, as given by the flux at one end of the resonator,
ψ = ψ(0).

We can divide the full Lagrangian into parts describing
the resonator, the charge-sensitive qubit and the interaction
between the two as LJCPM = LRes + LQ + LQ-Res. Here, the
Lagrangian describing the flux qubit (for simplicity again

neglecting the additional gates on the two islands) is

LQ = 1

4
C̃q(ϕ̇2

+ + ϕ̇2
−) + 1

2
αC̃qϕ̇

2
− + 2EJ,q cos

ϕ+
2

cos
ϕ−
2

+αEJ,q (cos �q cos ϕ− + sin �q sin ϕ−), (A4)

while for the renormalized resonator,

LRes = LRes0 + (C̃s + C̃q)ψ̇2 + 2EJ,s cos ψ . (A5)

Most importantly, we find that the interaction takes the form

LQ-Res = −C̃qψ̇ϕ̇+ + 2EJ,q sin ψ sin
ϕ+
2

cos
ϕ−
2

+ 2EJ,q (cos ψ − 1) cos
ϕ+
2

cos
ϕ−
2

. (A6)

The terms proportional to sin ψ̃ in this expression will lead to
an Jaynes-Cummings-type interaction between the resonator
and the qubit, while the terms proportional to (cos ψ̃ − 1)
will renormalize the resonator parameters as well as introduce
nonlinearities.

Focussing on the potential energy, we write the resonator
phase variable as35

ψ =
(

2π

�0

)√
h̄

2Crωr,0
(a† + a) ≡ ψ0(a† + a) , (A7)

where Cr is the total resonator capacitance and ωr,0 =
1/

√
LrCr the unloaded resonator frequency. The operator a

is the standard annihilation operator for resonator photons.
Taking the limit of large SQUID junctions, EJ,s 
 1, the
SQUID arms act on the resonator mainly as an inductive
shunt to ground. Then we find ψ � 1 and we can expand
the expression Eq. (A6) around ψ = 0. To lowest order in ψ ,
we therefore have

LQ-Res ≈ β1(a† + a)
∑
i,j

〈i|ŝc|j 〉|j 〉〈i|

+β2(a† + a)2
∑
i,j

〈i|ĉc|j 〉|i〉〈j | , (A8)

where |i/j 〉 are eigenstates of the flux qubit, β1 = 2EJ,qψ0,
β2 = 2EJ,qψ

2
0 , and we have introduced the shorthand nota-

tion ŝc = sin ϕ+
2 cos ϕ−

2 and ĉc = cos ϕ+
2 cos ϕ−

2 . To determine
which of the terms in Eq. (A8) dominates, we calculate the
matrix elements of the qubit coupling terms 〈i|ŝc|j 〉 and
〈i|ĉc|j 〉 for different qubit states. Specifically, we are interested
in how these terms change as a function of externally applied
charges on the qubit islands. For this reason, we first have
to determine how the presence of charges influence the flux
qubit.

From the Lagrangian LQ we perform a Legendre trans-
formation to arrive at the Hamiltonian HQ = ∑

i qi φ̇i − LQ.
Since the potential energy is left unchanged by this transforma-
tion, here we focus on the electrostatic (kinetic) energy terms
and their dependence on gate charges on the two qubit islands.
First, in the absence of gate charges, we find

HKin = 1

2C�

[
q2

1 (1 + α) + q2
2 (1 + α) + 2αq1q2

]
, (A9)

with the island charges q1 = ∂L/∂φ̇1 and q2 = ∂L/∂φ̇2 and
the total island capacitance C� = Cq(1 + 2α). Modeling the
effects of external charges on the qubit islands is then
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FIG. 8. (Color online) Plot of the matrix elements of the CMFQ
operators relevant for the interaction with the λ/4 resonator. (a) Even
matrix elements 〈0| cos ϕ+

2 cos ϕ−
2 |0〉 (red) and 〈0| sin ϕ+

2 cos ϕ−
2 |0〉

(blue) for two different charge bias points, qG,2 = e (solid) and
qG,2 = 0 (dashed). (b) Same for the uneven matrix elements
〈1| cos ϕ+

2 cos ϕ−
2 |0〉 and 〈1| sin ϕ+

2 sin ϕ−
2 |0〉. Due to the symmetric

circuit design the even terms, responsible for energy renormalization,
are two orders of magnitude larger than the uneven terms, which
would lead to an Jaynes-Cummings-like interaction between qubit
and resonator degrees of freedom.

straightforward. As illustrated in Fig. 1(c), at each of the
two red points in Fig. 7, we add an additional capacitor CG

connected to a grounded voltage source on the other side. A
simple calculation reveals that for each of these gates, we have
to supplement the Lagrangian with an additional term of the
form

LGi
= 1

2 C̃G(φi − VG,i)2 , (A10)

with the island flux φi and the gate voltage VGi
applied to

the gate capacitance of island i. With this addition, the kinetic
energy terms in the Hamiltonian of Eq. (A9) now take the
modified form

HKin = (1 + α + γ )

2C ′
�

[(q1 + qG,1)2 + (q2 + qG,2)2]

+ α

C ′
�

(q1 + qG,1)(q2 + qG,2) , (A11)

with the ratio between gate and qubit capacitances γ =
CG/Cq , the new total capacitance C ′

� = Cq(1 + γ )(1 + 2α +
γ ), and where we have defined the charges qG,i = VG,iCG. As
usual, we have neglected terms ∝ q2

G,i not contributing to the
circuit dynamics. As expected, the additional gates cause an
offset of the charge variables, as well as a renormalization of
the islands charging energy.

To now see the influence on the resonator of additional
charges on the qubit islands, we plot the matrix elements of
the coupling terms in Eq. (A8) for different qubit states. To do
this, we calculate the eigenstates of the flux qubit numerically
for a given set of parameters. The qubit is here fully described
by Eq. (A4) plus the additional gates to the islands from
Eq. (A11). These eigenfunctions are then used to calculate
and plot in Fig. 8 the relevant matrix elements of the two
flux qubit operators ŝc and ĉc in Eq. (A8). For the chosen

0 0.25 0.5 0.75 1

0.26

0.27

0.28

0.29

FIG. 9. (Color online) Kerr nonlinearity K as a function of gate
charge qG,1 at the flux sweet spot of the device, �q = �0/2. The
solid line is with charge bias on the second qubit island, qG,2 = e, the
dashed line for no charge bias, qG,2 = 0 With the chosen parameters,
the Kerr nonlinearity is modulated by ∼10% and is of the right order
to enable enhanced readout schemes.16,36

parameters (detailed below) and bias points at the sweet spots,
where �x = �s + �q = 2π and qG2 = 0 or e, we find that
the even matrix elements of the operator ŝc are exactly zero
and that 〈i|ĉc|j 〉,〈i|ŝc|j 〉 � 〈i|ĉc|i〉. Using the rotating wave
approximation to neglect terms ∝ a2, we can then rewrite
Eq. (A8) as

LQ-Res ≈ (a† + a)
∑

i

gi(σ
(i)
+ + H.c.) + a†a

∑
i

δωr,i |i〉〈i| ,

(A12)

where we have defined the Jaynes-Cummings coupling
strengths gi ∝ 〈i + 1|ŝc|i〉 + H.c. as well as the qubit state-
dependent resonator pulls δωr,i ∝ 〈i|ĉc|i〉. The operator σ

(i)
+ =

|i + 1〉〈i| describes a transition between adjacent qubit states.
All of these parameters depend on the form of the flux qubit
eigenstates and thus on the charge on the qubits islands.
The coupling g is only active nonperturbatively when the
qubit-resonator detuning is small, 
 = ωq − ωr ∼ g. For
our design, we find |g/
| � 1 as well as h̄ωq � kBT (see
main text) and thus we expect the flux qubit to remain
always in its ground state. The main effect of the CMFQ
on the resonator is then that of a charge tuneable inductance
directly changing its resonance frequency by the amount
δωr,0.

Finally, keeping higher order contributions in the Taylor
expansion of cos ψ leads to Kerr type contributions ∼K(a†a)2

to the Hamiltonian. The magnitude of this nonlinear term is
plotted in Fig. 9.

APPENDIX B: CHOICE OF JCPM PARAMETERS AND
ADDITIONAL RESULTS

In order for the JCPM to work as a purely passive charge
parity detector, several constraints on the circuit parameters
have to be fulfilled. The basic idea behind the design is
to couple a charge-sensitive flux qubit in such a way to a
λ/4 resonator that its charge tuneability is only reflected as
an effective tuneable inductance. In order for the qubit to
remain a passive element, it has to remain in its ground state
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at all times. Our symmetric coupling scheme, as shown in
Fig. 1, suppresses direct exchange of energy between the
resonator and the qubit. Additionally, we have to make sure
that the qubit’s level splitting is always well above temperature,
h̄ωq 
 kBT , so that thermal excitations can be neglected. As
ωq decreases exponentially with α, and polynomially with
the ratio of qubit Josephson to charging energy EJ,q/EC ,32

this restricts the values for these parameters in a realistic
setting to α ≈ 1 and EJ,q/EC ∼ 1–40. Additionally, since
the qubit energy is now a function of external charges, we
have to make sure that this modulation does not cause the
qubit transition frequency to go below or even near kBT /h

while still causing a large enough change in the resonator
frequency. The qubit’s sensitivity to charges increases with
the inverse ratio (EJ,q/EC)−1, and thus a compromise between
these two requirements has to be found. Additionally the qubit
Josephson energy EJ,q cannot be very small as compared
to the SQUID parameter EJ,s so that the relative change
in effective inductance seen by the resonator is not too
small.

Throughout the main text and here, numerical simulations
of the circuit response where performed with parameters
well within the standard toolbox of superconducting circuit
design. Specifically, for the resonator, we assumed an un-
loaded fundamental frequency of ωr,0/2π = 7.5 GHz with the
parameters

C0 = 1.11 × 10−10 F/m, L0 = 2.78 × 10−7 H/m,

l = 6 mm,

while for the SQUID junctions, we used

CJ = 5.17 × 10−17 F, EJ,s/2π = 350 GHz.

Finally, the qubit was modelled with junctions of Josephson
energy EJ,q/2π = 200 GHz while the charging energy of the
islands was taken to be EC/2π = 20 GHz. Neglecting the
small gate capacitance, this translates into a qubit junction
capacitance of Cq = 3.19 × 10−16 F. The qubit is also chosen
to be symmetric, with all three junctions equal, α = 1, and
we assumed small gate capacitors of equal capacitance CG =
0.01Cq . The requirement of non-negligible charging energy
EC of the qubit islands is the only parameter that is not realized
routinely in today experiments with flux qubits. Specifically,
it requires that the coupling gate capacitances CG not be too
large compared to Cq such as not to lower EC too much.

As mentioned above, we want to bias the SQUID at a
flux sweet spot such that its dynamics is frozen and it acts
only as an effective Josephson inductance. To achieve this, the
total external flux through the CMFQ loop must be an integer
multiple of the flux quantum �0, resulting in �x = 2nπ with
integer n. Additionally, for best results, we want to bias the
flux qubit at one of its flux sweet spot, �q = nπ .

Finally, Fig. 9 shows the induced resonator nonlinearity K

as a function of gate charge qG,1 for two charge bias points,
qG,2 = 0 and qG,2 = e, on the second qubit island. In both
cases, the nonlinearity K is of the order of ∼−200 kHz. This
is the same order of magnitude than the nonlinearities used
in single-shot bifurcation readout16 and qubit measurement
with nonlinear resonators.36 In the same way, the nonlinearity

2π 0 2π

2π

0

2π

2π 0 2π

2π

0

2π

FIG. 10. (Color online) Potential of a charge tuneable flux qubit
with α = 1.2 as function of the islands fluxes φ1/2 and at its flux
sweet spot, �q = π . Points of the same color denote potential minima
corresponding either clockwise or counterclockwise current through
the qubit loop. All points of the same color are equivalent since they
only differ by multiples of 2π in one of the phases. Arrows indicate
tunneling paths leading to hybridization of current states. For further
details, see text.

introduced by the CMFQ could thus be used to improve the
fidelity of charge parity measurements.

APPENDIX C: AHARONOV-CASHER EFFECT
IN FLUX QUBITS

Here, we give a brief explanation of the charge-tuneability
of the flux qubit transition (and thus of the effective inductance
it provides to the circuit) in terms of the Aharonov-Casher
effect. More details can be found in Refs. 32 and 33.
Figure 10 shows the potential landscape for a charge tuneable
flux qubit according to Eq. (A4). Colored dots indicate
potential minima whose ground states have either clockwise or
counterclockwise current in the qubit loop. Tunneling between
potential minima leads to hybridization of current states and,
close the flux sweet spot, is the main contribution to the qubit
energy splitting. For a standard flux qubit with α < 1, the
lowest barrier between two minima is indicated by the black
arrow in Fig. 10. Tunneling along this path corresponds to a
change in the variable ϕ− = φ1 − φ2. On the other hand, for a
charge tuneable flux qubit, where α � 1, which is the situation
depicted in the figure, the two barriers in the direction ϕ+ =
φ1 + φ2, indicated by the red arrows, are lower in energy. There
then exist two competing tunneling paths that are contributing
to the qubit level splitting. If charges are present on one of
the qubit islands, the different paths acquire different phases
due to the AC effect. Constructive or destructive interference
of the two paths is then possible depending on the number of
charges involved. Thus the tunneling amplitude and therefore
the qubit level splitting can be tuned by application of charges
to the qubit islands.
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FIG. 11. (Color online) Dynamical charge sensitivity Sq as a
function of bias charge qG,1 on the lower flux qubit island with
the upper island biased at the operating point for charge parity
detection, qG,2 = e, �x = 2π . We take the resonator photon loss rate
κ = 10 MHz and an intermediate number of measurement photons
n = 10.

APPENDIX D: DYNAMICAL CHARGE SENSITIVITY

When biased away from its charge sweet spots, the JCPM
can be used as a highly sensitive dynamical charge detector.
As a figure of merit, we define a charge sensitivity assuming a
standard homodyne measurement47 of the reflected phase of a
microwave signal to determine the resonance frequency of the
JCPM. Following Ref. 14, we write the sensitivity of such a
measurement as

Sϕ = δϕ
√

Tm =
√

1

κn
, (D1)

where δϕ is the variation in phase that can be resolved in the
measurement time Tm. Assuming a reflection measurement
with a single port, i.e., no transmission losses of photons in
the cavity, we find Tm = 1/(κnδϕ2) and arrive at the second
equality in Eq. (D1). The sensitivity depends on the resonator
leakage rate κ at which photons arrive at the measurement
apparatus, and the number of photons n determined by the
measurement driving strength.

For small variations in resonator frequency δωr , the change
in reflected phase is linear as δϕ ≈ δωr/κ . In the JCPM, the
resonance frequency depends directly on the external charge

and we can write δωr = ∂ωr

∂q
δq, where δq is a change in applied

gate charge, which we want to measure. We thus write

Sϕ = 1

κ

∂ωr

∂q
δq

√
Tm = 1

κ

∂ωr

∂q
Sq , (D2)

where we identified the dynamical charge sensitivity Sq =
δq

√
Tm. Hence we arrive at the equation

Sq =
√

κ

n

(
∂ωr

∂q

)−1

, (D3)

defining the dynamical sensitivity of a charge measurement
using a JCPM with measurement of the reflected phase of
the driving signal. In Fig. 11, we plot this sensitivity as a
function of charge bias point on the first qubit gate, for the same
operating point as above and assuming standard circuit QED
measurement parameters of κ/2π = 10 MHz and a moderately
strong drive with a total number of resonator photons n = 10.
The minimum sensitivity is reached for biasing in between
the two sweet spots at a gate charge of qG,1 = 0.5 e and
is of the order of 2 × 10−5 e/

√
Hz for these parameters.

Obviously, stronger driving of the resonator will allow for
faster measurement and thus increased sensitivity. Varying
the number of resonator photons n between 1 and 100, the
sensitivity ranges between Sq = 10−4–10−6 e/

√
Hz.

To give a bandwidth of charge detection we take a closer
look at the measurement time Tm. We write again δωr = ∂ωr

∂q
δq

and thus find for the detection bandwidth, i.e., the inverse
measurement time

BW = 1

Tm

= n

κ

(
∂ωr

∂q

)2

δq2 . (D4)

With the same parameters as above, we find the bandwidth
for detection of fractional charges δq = 10−6 e as BW =
1–100 MHz when varying the resonator drive power between
n = 1–100.

Note that we have, so far, assumed perfect measurement
efficiency, η = 1, which is obviously not fulfilled in experi-
ments. However, the only change from the above equations
will be to raise the sensitivity as Sq ∼ 1/

√
η and reduce the

bandwidth as BW∼ η.
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