Compatiblity of quantum states

David Poulin* and Robin Blume-Kohout†

Theoretical Division, Los Alamos National Laboratory, MS-B210, Los Alamos, New Mexico 87545
(Received 16 May 2002; published 15 January 2003)

We introduce a measure of compatibility between quantum states—the likelihood that two density matrices describe the same object. Our measure is motivated by two elementary requirements, which lead to a natural definition. We list some properties of this measure, and discuss its relation to the problem of combining two observers’ states of knowledge.

DOI: 10.1103/PhysRevA.67.010101

PACS number(s): 03.65.Ta, 02.50.–r, 03.67.–a

The quantum superposition principle induces a qualitative difference between classical and quantum states of knowledge. The state of a quantum system can be fully specified, yet not predict with certainty the outcome of a measurement—a state of affairs which has only the observers’ ignorance as classical analog. In quantum mechanics, incomplete knowledge is represented by a mixed density matrix—though a mixed density matrix does not necessarily reflect ignorance—which corresponds imperfectly to a classical distribution; the “quantum uncertainty” of pure states combines with the “classical uncertainty” of a distribution to yield an object, which can be represented by different decompositions or realizations.

The fidelity of two quantum states [1] \(\rho_A \) and \(\rho_B \),

\[
F(\rho_A, \rho_B) = \text{Tr}\left(\sqrt{\rho_A}^{1/2} \rho_B \sqrt{\rho_A}^{1/2} \right)
\]

(or more precisely \(F^2 \)), measures the likelihood that various measurements made on the two states will obtain the same result. Thus, fidelity is a measure of similarity between states, which does not distinguish between classical and quantum uncertainty.

In this paper, we introduce compatibility, a measure similar to fidelity, but which compares two observers’ states of knowledge, not the results of the measurements which they could do. We want the compatibility to measure classical admixture, while treating different pure states as fundamentally different: if two observers claim to have complete knowledge of a system, their descriptions had better agreed completely [8]. Hence, a compatibility measure \(C(\rho_A, \rho_B) \) should satisfy the following two requirements:

1. When \([\rho_A, \rho_B] = 0 \) (classical mixture) the compatibility should be equal to the fidelity.
2. The compatibility of incompatible states should be 0.

While our first requirement should be transparent, the second sounds tautological, and requires further explanation. Consider two observers (Alice and Bob) whose respective states of knowledge are described by \(\rho_A \) and \(\rho_B \). (Throughout this paper, we use subscript \(k \) to designate either \(A \) or \(B \).) Brun, Finkelstein, and Mermin [2] defined Alice’s and Bob’s descriptions to be compatible if and only if they could be describing the same physical system. They then addressed the following question: under what conditions are \(\rho_A \) and \(\rho_B \) compatible? Their answer is quite simple: \(\rho_A \) and \(\rho_B \) are compatible if and only if the intersection of their supports, \(S = S(\rho_A) \cap S(\rho_B) \), is nonempty. The support \(S(\rho) \) of a density matrix \(\rho \) is the complement of its null space \(N(\rho) \); to obtain the projector \(P_S(\rho) \) onto \(S(\rho) \), diagonalize \(\rho \) and replace each nonzero eigenvalue with 1. Thus, \(\rho_A \) and \(\rho_B \) are compatible if \(P_{S(\rho_A)} P_{S(\rho_B)} \) has at least one unit eigenvalue.

In other words, two states of knowledge are incompatible if between them they rule out all possible pure states.

With this definition, state \(\rho_A = |0\rangle \langle 0| \) is compatible with state \(\rho_B = \epsilon |0\rangle \langle 0| + (1 - \epsilon) |1\rangle \langle 1| \) and state \(\rho_B' = (1 - \epsilon) |0\rangle \langle 0| + \epsilon |1\rangle \langle 1| \) as long as \(0 < \epsilon < 1 \). Nevertheless, as \(\epsilon \rightarrow 0 \), it is clear that the compatibility of \(\rho_A \) and \(\rho_B \) should vanish while that of \(\rho_A \) and \(\rho_B' \) should approach unity. The definition of Ref. [2] makes no distinction between these two cases and this is what originally motivated the present work.

Now that requirement (2) has been clarified, we can proceed with the definition of the compatibility measure.

Definition 1. Let \(\mathcal{B}_0(\mathcal{H}) \) be the set of all density matrices on Hilbert space \(\mathcal{H} \). For \(\rho \in \mathcal{B}_0(\mathcal{H}) \), define \(\mathcal{P}(\rho) \) as the set of realizations of \(\rho \):

\[
\mathcal{P}(\rho) = \left\{ P: \int_{\mathcal{B}_0(\mathcal{H})} P(\sigma) \, d\sigma = \rho \right\},
\]

where the \(P \) are probability distributions over \(\mathcal{B}_0(\mathcal{H}) \). Then, the compatibility of \(\rho_A \) and \(\rho_B \in \mathcal{B}_0(\mathcal{H}) \) is defined as

\[
C(\rho_A, \rho_B) = \max_{\substack{P_A \in \mathcal{P}(\rho_A) \\text{ and } \rho_B \in \mathcal{B}_0(\mathcal{H})}} \int_{\mathcal{B}_0(\mathcal{H})} \sqrt{P_A(\sigma) P_B(\sigma)} \, d\sigma,
\]

the integral representing the classical fidelity \(F(P_A, P_B) \) (or statistical overlap) of two classical distributions \(P_A \) and \(P_B \).

Lemma 1. All distributions \(P \in \mathcal{P}(\rho) \) must vanish outside \(\mathcal{B}_0(\rho) \): the set of density matrices with support restricted to \(S(\rho) \).

Proof. Let \(P(\sigma) \) be a realization of \(\rho \). We can separate \(\rho \) into two parts:
\\[\begin{align*}
\rho &= \int_{\mathcal{B}_0^1(\rho)} P_k(\sigma) \sigma \, d\sigma + \int_{\mathcal{B}_0^0(\rho)} P_k(\sigma) \sigma \, d\sigma \\
&= p\rho' + (1-p)\rho'',
\end{align*}\]

where \(\rho'\), by definition, has support on \(\mathcal{N}(\rho)\), and \(\rho''\) has support strictly on \(\mathcal{S}(\rho)\) and \(p = \int_{\mathcal{B}_0^1(\rho)} P_k(\sigma) \, d\sigma\). If \(p \neq 0\), there exists \(\psi \in \mathcal{N}(\rho)\) such that \(\rho\) does not annihilate \(\psi\). This contradicts the definition of \(\mathcal{N}(\rho)\), so we conclude that \(p = 0\) and therefore \(P\) is restricted to \(\mathcal{B}_0^0(\rho)\).

Theorem 1. Definition 1 satisfies both of our requirements. \(\Box\)

1. If \(\rho_A\) commutes with \(\rho_B\), then they have orthogonal decompositions onto the same set of pure states: \(\rho_A = \sum_i |a_i\rangle \langle a_i|; \rho_B = \sum_i |b_i\rangle \langle b_i|\). Thus \(C(\rho_A,\rho_B) \geq \sum_i \sqrt{a_i b_i} = F(\rho_A,\rho_B)\). Later (see property 4) we show that \(C(\rho_A,\rho_B) = F(\rho_A,\rho_B)\); for commuting density matrices \(C(\rho_A,\rho_B) = F(\rho_A,\rho_B)\). (2) If \(\rho_A\) and \(\rho_B\) are incompatible, their supports are disjoint, which implies that \(P_A(\sigma)\) and \(P_B(\sigma)\) are restricted to disjoint sets, implying that \(C(\rho_A,\rho_B) = 0\).

Note that this measure is not the only one that satisfies our two requirements. For example, define

\[D_A(\rho_A,\rho_B) = \text{Tr}[(\rho_A)^{1/2n}(\rho_B)^{1/n}(\rho_A)^{1/2n}]^n].\]

Clearly, \(D_A(\rho_A,\rho_B) = F(\rho_A,\rho_B)\) when \(n = 1\) or for any \(n\) when \(\rho_A,\rho_B = 0\), so it satisfies our first requirement. For the second requirement, notice that

\[\lim_{n \to \infty} D_A(\rho_A,\rho_B) = \lim_{n \to \infty} \text{Tr}[(P_{S\rho_A})^{1/n}(P_{S\rho_B})^{1/n}]^n,\]

which is 0 if \(P_{S\rho_A},P_{S\rho_B}\) has no unit eigenvalue, i.e., if \(\rho_A\) and \(\rho_B\) are incompatible. Therefore, \(D_A(\rho_A,\rho_B) = \lim_{n \to \infty} D_A(\rho_A,\rho_B)\) is a valid measure of compatibility.

Definition 1 can also be generalized to

\[E_A(\rho_A,\rho_B) = \max_{P_A \in \mathcal{P}(\rho_A)} \int_{\mathcal{B}_0(\rho)} [P_A(\sigma)]^n [P_B(\sigma)]^{1-n} d\sigma,\]

where \(\mathcal{B}_0(\rho)\) is the set of all pure states in \(\rho\) and \(Q(\rho)\) is the set of pure state realizations of \(\rho\):

\[Q(\rho) = \left\{ \psi : \int_{\mathcal{B}_0(\rho)} Q(\psi) |\psi\rangle \langle \psi| d\psi = \rho \right\},\]

(10)

These results hold under the marginalization \(Q_A(\psi) = \int_{\mathcal{B}_1(\rho)} P_A(\sigma) f_A(\psi) |\psi\rangle \langle \psi| d\sigma d\psi\).

Theorem 3. When one of the two states is pure (say \(\rho_B\)), \(C(\rho_A,\rho_B) = \sqrt{p}\) where \(p\) is given by

\[p = \min_{q \in [0,1]} \{ q: \det (\rho_A - q \rho_B) = 0 \},\]

(12)

if \(\rho_B\) lies within \(\mathcal{S}(\rho_A)\) and \(p = 0\) otherwise.

Proof. There is a unique realization for \(\rho_B\): \(\rho_B(\sigma) = \delta(\sigma - \rho_B)\). The maximum value of \(q\) for which we can write \(\rho_A = q \rho_B + (1-q) \sigma\) (with \(\sigma\) a valid density matrix) is \(p\). The result follows.

Theorem 4 (E). Any local maximum of \(F(\rho_A,\rho_B)\) over \(\mathcal{P}(\rho_A) \otimes \mathcal{P}(\rho_B)\) is a global maximum.\(\Box\)

Proof. Fidelity is a concave function: \(F(\lambda \rho_A + (1-\lambda) \rho_B, \rho_A^*, \rho_B^*) \geq \lambda F(\rho_A, \rho_B) + (1-\lambda) F(\rho_A^*, \rho_B^*)\). The sets \(\mathcal{P}(\rho_A)\) and \(\mathcal{P}(\rho_B)\) are convex: any convex combination of valid probability distributions of mean \(\rho\) is also a valid probability distribution with mean \(\rho\). The result follows automatically.

We now give a list of properties of the compatibility measure.

Property 1 (D). \(C(\rho_A,\rho_B)\) is symmetric.

Property 2 (D and E). Compatibility is invariant under unitary transformation: \(C(U \rho_A U^\dagger, U \rho_B U^\dagger) = C(\rho_A,\rho_B)\).

Property 3 (D and E). For pure states \(C(|\psi_A\rangle, |\psi_B\rangle) = 1\) if and only if \(|\langle \psi_A | \psi_B \rangle|^2 = 1\) and \(0\) otherwise.

Property 4 (D). (Upper bound) \(C(\rho_A,\rho_C) \leq F(\rho_A,\rho_B)\).

Property 5 (D and E). \(F(\rho_A,\rho_B) = 0 \Rightarrow C(\rho_A,\rho_B) = 0\) and \(F(\rho_A,\rho_B) = 1 \Rightarrow C(\rho_A,\rho_B) = 1 \Rightarrow \rho_A = \rho_B\).

**Property 6 (Lower bound) \(C(\rho_A,\rho_B) \geq r \langle \xi_A | \xi_B \rangle\), where \(r\) is the greatest value of \(q\) for which one can write \(\rho_A = (q/r) P_S + (1-q) \sigma\) with \(\sigma\) being a valid density matrix,
see Eq. (12), and \(r = \text{Tr}(P S) \) is the dimension of \(S = S(\rho_A) \cap S(\rho_B) \). (For compatible states, \(\epsilon \equiv \lambda^0_k \), the smallest nonzero eigenvalue of \(\rho_k \).

Property 7 (E). (Multiplicativity) \(C(\rho_A \otimes \rho_A' \otimes \rho_B \otimes \rho_B') \geq C(\rho_A, \rho_B)C(\rho_A', \rho_B') \).

Proofs. Properties 1, 2, and 3 are straightforward from Definition 1.

Property 4: Assume that \(Q_{\epsilon}(\psi) \) are the optimal distributions given by Theorem 2. We choose \(\tilde{x} \in \mathbb{R}^{(2N - 2)} \) (where \(N \) is the dimension of \(\mathcal{H} \)) as a parametrization for \(\mathcal{B}_0(\mathcal{H}) \): \(\psi = \psi(\tilde{x}) \), and construct the purifications

\[
|\Psi_A\rangle = \int \sqrt{Q_A(\psi(\tilde{x}))} \psi(\tilde{x}) \otimes |\tilde{x}\rangle d\tilde{x},
\]

where \(\tilde{x} \) is now treated as a quantum continuous variable \(\langle \tilde{x}|\tilde{x}\rangle = \delta(\tilde{x} - \tilde{x}') \) (e.g., position of an particle in a \(N \)-dimensional box). Then \(C(\rho_A, \rho_B) = \langle \Psi_A | \Psi_B \rangle = F(\rho_A, \rho_B) \), since the fidelity is the maximum of this quantity over all purifications.

This proof introduces an interesting distinction between fidelity and compatibility. Fidelity is the optimal inner product between all purifications of \(\rho_A \) and \(\rho_B \). On the other hand, compatibility involves purifications of a very special kind [Eq. (13)]. All that is needed to transform compatibility into fidelity is to replace Eq. (13) by

\[
|\Psi_A\rangle = \int \sqrt{Q_A(\psi(\tilde{x}))} \psi(\tilde{x}) \otimes |\tilde{x}\rangle d\tilde{x},
\]

\[
|\Psi_B\rangle = \int \sqrt{Q_B(\psi(\tilde{x}))} \psi(\tilde{x}) \otimes |\tilde{x}\rangle d\tilde{x}
\]

for arbitrary unitary operators \(U_A \) and \(U_B \).

Property 5 follows from \(F(\rho_A, \rho_B) = 1 \iff \rho_A = \rho_B \), requirement (1), and property 4.

Property 6: We can choose a distribution where \(\rho_k \) has probability \(r_k \) at the point \(\sigma = P_S(r) \).

Property 7: The product of the optimal distributions for \(C(\rho_A, \rho_B) \) and \(C(\rho_A', \rho_B') \) are valid distributions over the combined Hilbert space but might not be optimal. We do not know if this inequality can be reduced to an equality. In other words, it is possible that the optimal distribution for \(\rho_A \otimes \rho_A' \) and \(\rho_B \otimes \rho_B' \) involves nonproduct states.

It is worth mentioning that no smooth function of the compatibility satisfying \(f(C) = 1 \iff C = 0 \) and \(f(C) = 0 \iff C = 1 \) can be used to build a metric on \(\mathcal{B}_0(\mathcal{H}) \). This is best illustrated by the following two-dimensional example. Assume that states \(\rho_+ \) and \(\rho_- \) are pure, derived from \(|\psi_\pm\rangle = e^{\cos(\epsilon)} \pm e^{\sin(\epsilon)} |0\rangle \) and \(\rho_0 = (1 - \epsilon)|0\rangle|0\rangle + \epsilon|1\rangle|1\rangle \), where \(\epsilon \to 0 \). One can easily verify that \(C(\rho_+, \rho_-) = 0 \) and \(C(\rho_+, \rho_0) = C(\rho_-, \rho_0) = 1 - O(\epsilon) \) so \(f(C(\rho_+, \rho_-)) = 1 > f(C(\rho_+, \rho_0)) + f(C(\rho_-, \rho_0)) \to 0 \) as \(\epsilon \to 0 \). This is in contrast with classical distributions: when \(\{|p_A, p_B\rangle = 0, \cos^{-1}(f(\rho_A, \rho_B)) \) is a valid distance measure [3].

Measurement. Suppose that Alice and Bob acquire their knowledge of \(\rho_A \) and \(\rho_B \) through measurement. These states will always be compatible: incompatible knowledge acquired through measurement would indicate an inconsistency in quantum theory [9]. For example, they can each be given many copies of a quantum system in state \(\rho \) of which they initially have no knowledge except the dimension. They carry out independent measurements on those copies and, with the help of Bayesian rules, update their description of the system (see Ref. [4], and references therein). As mentioned earlier, their descriptions will always be compatible. Nevertheless, a low compatibility could result as a consequence of one of the following situations: (i) they were given copies of different states, i.e., the promise of identical systems was broken; (ii) their measurement apparatus is miscalibrated; or (iii) they are in a very improbable branch of the universe.

These eventualities cannot be detected by the fidelity of \(\rho_A \) and \(\rho_B \). For example, suppose that, for a two-level system,

\[
\rho_A = (1 - \epsilon)|0\langle 0| + \frac{\epsilon}{2},
\]

\[
\rho_B = (1 - \epsilon)|+\langle +| + \frac{\epsilon}{2},
\]

where \(|+\rangle = (1/\sqrt{2})(|0\rangle + |1\rangle) \). As the observers’ knowledge becomes more and more accurate \(\epsilon \to 0 \), the compatibility goes to 0, indicating one of the three situations listed above. On the other hand, fidelity saturates at \(F^2 = 1/2 \), which is the same as if both Alice and Bob had a vague knowledge of the state, e.g.,

\[
\rho_A = \left(\frac{1}{2} + a \right)|0\rangle|0\rangle + \left(\frac{1}{2} - a \right)|1\rangle|1\rangle,
\]

\[
\rho_B = \left(\frac{1}{2} - a \right)|0\rangle|0\rangle + \left(\frac{1}{2} + a \right)|1\rangle|1\rangle,
\]

with \(a = \sqrt{2}/4 \). This clearly illustrates the fact that fidelity makes no distinction between classical and quantum uncertainty.

Combining knowledge. Now, assume that Alice and Bob want to pool their information. If \(C(\rho_A, \rho_B) = 0 \) (which cannot result from measurement), their “knowledge” is contradictory. When \(C(\rho_A, \rho_B) > 0 \), however, they can combine their states of knowledge to get a new density matrix \(\rho_{AB} \). This issue has recently been studied by Jacobs [5] but with the only conclusion that \(\rho_{AB} \) should lie in \(S(\rho_A) \cap S(\rho_B) \).

We propose that the state obtained from combining two states of knowledge should be the one which is maximally compatible with both of them. This requires a definition of three-way compatibility:

\[
C(\rho_A, \rho_B, \rho_C) = \max_{p_A \in P(\rho_A)} \int_{\mathcal{B}_0(\mathcal{H})} \sqrt{P_A(\sigma)P_B(\sigma)P_C(\sigma)} d\sigma.
\]

Hence, our rule for combining states of knowledge reads
\[\rho_{AB} = \arg \max_{\rho} C(\rho_A, \rho_B, \rho); \quad (18) \]

in the eventuality that the maximum over ρ is not unique, one can discriminate with a maximum entropy $S(\rho)$ criteria which is well motivated in the current context. For any fixed P_A and P_B, the P_C that optimizes Eq. (17) is proportional to the geometric average of P_A and P_B. Therefore, defining \tilde{P}_A and \tilde{P}_B as the distributions that optimized Eq. (3), we get

\[\rho_{AB} = \int_{\mathcal{B}(\mathcal{H})} P_{AB}(\sigma) \sigma \, d\sigma, \quad (19) \]

where $P_{AB} = \sqrt{P_A P_B / C(\rho_A, \rho_B)}$. Furthermore, there is a simple relation between the optimal three-way compatibility and the compatibility of the two original descriptions: $C(\rho_A, \rho_B, \rho_{AB}) = C(\rho_A, \rho_B)$.

Knowledge. Knowledge of a quantum system can take many forms; as Bennett expresses it, “It is possible to know or possess a quantum state in infinitely many physically inequivalent ways, ranging from complete classical knowledge, through possession of a single specimen of the state, to weaker and less compactly embodiable forms such as the ability to simulate the outcome of a single POVM (positive operator valued measure) measurement on the state.”

The compatibility measurement of Eq. (3) is meaningful when we consider classical description of the quantum states; the quantum fidelity [Eq. (1)] corresponds to a situation where single specimens of the quantum states are available (respectively “knowledge of the quantum” and “quantum knowledge”). One can define compatibility measurements according to the type of knowledge one is dealing with. For example, we can define the compatibility between a state ρ and an ensemble $\{q_j, \sigma_j\}$ as

\[\max_{P(\eta)} F(\rho, Q), \quad Q(\sigma) = \sum_j q_j \delta(\sigma - \sigma_j). \]

While the pure state $|+\rangle = (1/\sqrt{2})(|0\rangle + |1\rangle)$ is compatible with the ensemble $E_1 = \{(1/2)|0\rangle\langle 0| + (1 - p)|1\rangle\langle 1|\}$, it is incompatible with the ensemble $E_2 = \{(p, |0\rangle\langle 0|), ((1 - p), |1\rangle\langle 1|)\}$, even if they are realizations of the same state.

An ensemble embodies more knowledge than its associated (average) state. In our prescription for combining knowledge, we have assumed that all of Alice’s and Bob’s knowledge was encapsulated in their respective density matrices. Note that all knowledge can be represented in this form by including ancillary systems [e.g., Eq. (13)].

Suppose, instead, that both Alice’s and Bob’s states of knowledge are represented by the ensemble E_1. Obviously, their combined density matrix should be $\rho_{AB1} = \sum q_j \rho_j$ [Eq. (3)] and $\rho_{AB2} = \sum q_j (1 - p^{1/2})^2 |0\rangle\langle 0| + (1 - p)^2 |1\rangle\langle 1|$, respectively [6].

The authors would like to acknowledge Howard Barnum, Kurt Jacobs, Harold Ollivier, and Wojciech Zurek for discussions on this subject. R.B.K. would also like to thank Todd Brun for discussions and inspiration.

[8] Caves, Fuchs, and Schack have recently challenged this statement [7]. The distinction between our studies leading to this disagreement can be summarized by “state of belief vs state of knowledge.”
[9] Incompatible knowledge could emerge as a consequence of the finite accuracy of the measurement apparatus: nevertheless, such limitations should be taken into account in the state estimation.