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Self-correction in Wegner’s three-dimensional Ising lattice gauge theory

David Poulin,1,2,* Roger G. Melko,3,4,† and Matthew B. Hastings5,6,‡

1Département de Physique & Institut Quantique, Université de Sherbrooke, Québec, Canada J1K 2R1
2Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8

3Department of Physics and Astronomy, University of Waterloo, Ontario, Canada N2L 3G1
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

5Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
6Quantum Architecture and Computation Group, Microsoft Research, Redmond, Washington 98052, USA

(Received 17 December 2018; revised manuscript received 18 February 2019; published 8 March 2019)

Motivated by the growing interest in self-correcting quantum memories, we study the feasibility of self-
correction in classical lattice systems composed of bounded degrees of freedom with local interactions. We
argue that self-correction, including a requirement of stability against external perturbation, cannot be realized
in system with broken global symmetries such as the two-dimensional Ising model, but that systems with local,
i.e., gauge symmetries, have the required properties. Previous work identified a three-dimensional (3D) quantum
system which realizes a self-correcting classical memory [E. Dennis et al., J. Math. Phys. 43, 4452 (2002)].
Here, we show that a purely classical 3D system, Wegner’s Ising lattice gauge model [F. J. Wegner, J. Math.
Phys. 12, 2259 (1971)], can also realize this self-correction despite having an extensive ground-state degeneracy.
We give a detailed numerical study to support the existence of a self-correcting phase in this system, even when
the gauge symmetry is explicitly broken. More generally, our results obtained by studying the memory lifetime
of the system are in quantitative agreement with the phase diagram obtained from conventional analysis of the
system’s specific heat [I. S. Tupitsyn et al., Phys. Rev. B 82, 085114 (2010)], except that self-correction extends
beyond the topological phase, past the lower critical temperature.
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I. INTRODUCTION AND MOTIVATION

A self-correcting memory is a passive physical device
that stores information robustly at finite temperature despite
fluctuations of its external parameters like magnetic field,
pressure, etc. Such a system can be prepared in one of a
finite number of initial states. The identity of this initial state
can in principle be reconstructed with high probability up to
some mixing time, after which all signatures of the initial
configuration are lost. We say that a system is self-correcting
if the mixing time grows with the system size. In particular,
we are interested in self-correcting memories that arise from
systems composed of localized, bounded degrees of freedom
with short-range interactions.

It is well established that reliable computation can be
realized from unreliable components using fault-tolerant tech-
niques in both the classical [1–4] and quantum [5–11] settings.
Moreover, fault-tolerant computation can be realized from
local cellular automaton [12–14], which in physical terms
corresponds to a lattice system with local interactions that are
periodic in time. However, these processes dissipate heat. In
contrast, a self-correcting memory is stabilized thermodynam-
ically, i.e., through its interaction with a heat reservoir, and
does not require external power.
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To serve as a memory, a system must possess more than
one metastable state, i.e., it must display phase coexistence.
Information is stored in the system by preparing one of these
states, and the probability of information corruption, i.e., the
probability that the system spontaneously transitions from one
phase to another, is exponentially suppressed with increasing
system size.

Robust phase coexistence is however ruled out by the
Gibbs phase rule [15]: for a system with N external param-
eters, the coexistence of P stable phases can only occur in
a submanifold of codimension P − 1. In other words, phase
coexistence requires fine tuning of the system’s parameters.
As we will explain below, this rule can easily be understood in
the Landau-Ginzburg paradigm of local order parameters and
spontaneously broken symmetries, where it also rules out the
existence of self-correcting memories. In this paper, we show
how the Gibbs phase rule can be circumvented by turning to
systems with nonlocal order parameters.

The motivations to study this problem stem from many
sources. In the classical setting, the question of emerging
global order from local noisy interactions has a long his-
tory. For instance, the phase rule forbids the existence of
a phase transition in a one-dimensional, translationally in-
variant system composed of bounded, discrete degrees of
freedom. However, Gács’ cellular automaton [16,17] provides
a “counterexample” to this rule, that is made possible using
a time-dependent periodic Hamiltonian instead of a constant
Hamiltonian [18]. Here, we present an alternative way of
escaping the phase rule.
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In the quantum setting, the prospect of quantum tech-
nologies has generated a growing interest in robust quan-
tum memories. While the theory of fault-tolerant quantum
computation is well developed, a self-correcting quantum
memory [19] would enable passive, reliable quantum informa-
tion storage, analogous to classical hard drives. The quantum
model of [10,20] realizes a self-correcting quantum memory
in four spatial dimensions and a classical memory in three
spatial dimensions. It leaves open, however, the questions of a
robust classical memory in a classical system, and of a robust
quantum memory in lower spatial dimensions.

Lower-dimensional quantum model systems have been
proposed [19,21–25] and disputed [26–28]. Thus, the ex-
istence of a self-correcting quantum memory in less than
four spatial dimensions remains an open question to date.
Given this status, it seams reasonable to step back and study
classical self-correcting memories in a classical system be-
fore turning to the quantum setting. In particular, the study
of self-correcting quantum memories in two spatial dimen-
sions [19,21–23] appears premature given that our construc-
tion of a classical self-correcting memory is the only model
we are aware of and requires three spatial dimensions.

In addition, the conditions for a quantum memory are
more stringent than those for a classical memory. Suppose
the energies of two memory states 0 and 1 differ by some
unknown, possibly fluctuating, quantity �. If � is extensive,
i.e., if there is a constant energy density difference between
the two states, then thermal fluctuations will drive the memory
to the state of lower energy. This thermal instability is a
problem for both quantum and classical memories. However, a
quantum memory must not only preserve the discrete memory
states 0 and 1, it must also preserve coherent superpositions
thereof |ψ (0)〉 = α|0〉 + β|1〉. For any finite energy split-
ting � between the two states, Schrödinger’s time evolution
will introduce an unknown phase over time |ψ (t )〉 = α|0〉 +
e−i�t/h̄β|1〉, effectively destroying the quantum superposition.
Such a dephasing problem only affects quantum memories
and does not require an extensive energy difference �, show-
ing that the criteria to realize a self-correcting quantum mem-
ory are much more stringent than for a classical memory. In
contrast, quantum mechanical models are richer than classical
models in some fixed spatial dimension, so the question of
classical self-correction in classical systems is a nontrivial
intermediate case to study.

The rest of this paper is organized as follows. In the next
section, we argue that systems with a broken local symme-
try cannot realize a self-correcting memory. In Sec. III, we
turn to systems with a gauge symmetry and explain how
the previous argument breaks down. Section IV presents a
detailed model and explains why it is stable against both
external perturbations and thermal fluctuations. Numerical
simulations of that model are presented in Sec. V where the
self-correcting behavior is clearly observed. We conclude with
general remarks and some open questions.

II. SYMMETRY-BROKEN PHASE

To build intuition, consider a two-dimensional ferro-
magnetic Ising model with Hamiltonian H = −J

∑
〈i, j〉 σiσ j ,

where spins take values σ j ∈ {−1,+1} (see, e.g., [29]). It has
two ground states, consisting of either all spins up or all spins
down, and this degeneracy can be used to store one bit of in-
formation. At nonzero temperature, thermal fluctuations will
create droplets of inverted spins, reducing the magnetization.
However, the energy of an error droplet D is proportional
to the length of its boundary E = 2J|∂D|, so at tempera-
ture T , large droplets are suppressed by a Boltzmann factor
e−E/kBT (we set kB = 1). Below the critical Curie temperature
TC , error droplets are typically too sparse to percolate, so
the sign of the magnetization retains information about the
stored bit of information. Statistical fluctuations could lead to
spontaneous percolation of the droplets, but such fluctuations
are exponentially suppressed with the system size, meaning
that the memory lifetime grows exponentially with the system
size.

This stability is attributable to a symmetry: flipping all
the spins leaves the Hamiltonian invariant. Subcritical tem-
perature thermal states spontaneously break this symmetry,
either choosing a positive or negative magnetization sec-
tor, thus enabling the system to serve as a memory. This
requires fine tuning, however: generic perturbations to the
Hamiltonian will break this symmetry and favor one sec-
tor over the other. For instance, a magnetic field will add
a term B

∑
i σi to the Hamiltonian. The energy of a spin-

down droplet D in a spin-up background is modified to
E = −2B|D| + 2J|∂D|. Because the area |D| of a droplet
grows faster than its boundary |∂D|, no matter how small
the magnetic field B is, the Boltzmann factor will favor the
formation of large droplets, and hence a unique stable sector.
We see that phase coexistence is restricted to a codimension 1
manifold of the (B, T ) phase diagram in accordance to Gibbs’
phase rule.

Because of the required fine tuning, the Ising model is not
a robust phase of matter, it is merely a symmetry-protected
phase of matter. A self-correcting memory is a symmetry-
broken finite-temperature phase, robust to generic physical
perturbations that are not constrained by any symmetries.
This is by definition impossible to realize in symmetry-
broken phases with a local order parameter. Suppose in-
deed that the Hamiltonian H has a spontaneously broken
symmetry with associated order parameter M, i.e., M takes
distinct expectation values in the different thermal sectors.
Adding a perturbation μM to the Hamiltonian will favor
one sector over the others, so the system will thermal-
ize to this unique sector irrespective of initial conditions.
Moreover, because M is a local order parameter, the term
μM consists of physically realistic local interactions. In the
Ising model, for instance, M would be magnetization and
the perturbation would correspond to an external magnetic
field.

III. NONLOCAL ORDER

We have argued above that in the presence of symmetry-
breaking perturbations, thermal stability is incompatible with
the existence of a local order parameter. Instead, we turn
to systems with nonlocal order parameters. In the quantum
setting, it is possible for a system to possess two distinct
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ground states |ψ0〉 and |ψ1〉 that are locally indistinguishable.
The two states,

∣∣ψAB
0

〉 = 1√
2

(|↑A↑B〉 + |↓A↓B〉), (1)

∣∣ψAB
1

〉 = 1√
2

(|↑A↑B〉 − |↓A↓B〉), (2)

illustrate this idea. In both, the single-spin state obtained from
a partial trace is maximally mixed

ρA
0/1 = ρB

0/1 = 1
2 (|↑〉〈↑| + |↓〉〈↓|), (3)

yet the two states are orthogonal to each other. Thus, any
single-spin measurement cannot distinguish between the two
states. Topologically ordered systems extend this idea to local
Hamiltonians whose degenerate ground states are indistin-
guishable from each other given any observable acting on a
homologically trivial region of the system manifold space.
Thus, these systems naturally present a stability to local
perturbations [30–32].

In the classical setting, two distinct configurations of a sys-
tem composed of local degrees of freedom must unavoidably
differ locally, so are subject to an energy splitting by a local
field. To obtain a self-correcting memory, we therefore cannot
encode information states in distinct system configurations.
Instead, we choose a one-to-many encoding where each in-
formation state is encoded in an ensemble of classical states,
e.g., 0 is encoded in any configuration from the ensemble
	0 = {σ 1

0 , σ 2
0 , . . .} and 1 is encoded in any configuration from

the ensemble 	1 = {σ 1
1 , σ 2

1 , . . .}. While any of these individ-
ual states can be locally distinguished, the distinct ensembles
can be chosen to be statistically locally indistinguishable.

A concrete way of realizing this encoding uses a Hamilto-
nian with a gauge symmetry. The spectrum of such a model is
exponentially degenerate because configurations related by a
gauge transformation have the same energy. The information
ensembles 	 j will consist of sets of states that are related
by a gauge transformation. The fact that these ensembles
cannot be distinguished locally is then a corollary of Elitzur’s
theorem [33,34] which states that a gauge symmetry cannot be
spontaneously broken. Moreover, the nonlocal order parame-
ter characterizing the gauge model remains well defined in the
absence of a gauge symmetry, so it can continue to serve as
the information readout in the model even when a symmetry-
breaking field is added. The next section illustrates these ideas
with a concrete model, Wegner’s three-dimensional (3D) Ising
lattice gauge theory [35].

IV. MODEL

The model we consider is a cubic lattice of size L × L ×
L, with Ising spins σi ∈ {−1,+1} residing on each edge (see
Fig. 1 for an illustration). The Hamiltonian is the sum over
plaquettes

H0 = −J
∑

P

AP, (4)

where J > 0 and for plaquette P with boundary edges ∂P =
(i, j, k, l ), we define AP = σiσ jσkσl . For simplicity, we as-
sume the lattice has periodic boundary conditions. Beyond

Gauge
Wz

AP

Sz

FIG. 1. The model consists of Ising spins σi placed on each
edge of a regular square lattice with periodic boundary conditions.
Green plaquettes represent the coupling terms of the Hamiltonian.
Orange vertices represent gauge symmetries. The red string is a
gauge-invariant Wilson loop Wz. Flipping all spins along the blue
plane Sz perpendicular to the z axis inverts the value of Wz.

its use in lattice gauge theory [34], this model is familiar in
quantum error correction as it consists of the“classical part”
of the three-dimensional toric code [10,20]. That quantum
model is known to be a self-correcting classical memory;
the question we ask here is whether it retains that property
without the kinetic quantum terms. Note that the spectrum
of the model changes drastically with the presence of the
quantum kinetic term. In particular, the quantum model has
some constant ground-state degeneracy while the degeneracy
of the classical model is extensive. Thus, there is a priori no
reason to assume any relation between the thermal properties
of the two models, particularly in the presence of an external
field as we explain below.

This Hamiltonian has a gauge symmetry generated by
flipping all six spins adjacent to a vertex. To see that this is
a symmetry, note that a plaquette and a vertex share an even
number η (either 0 or 2) of edges, so the gauge transformation
will change a plaquette coupling AP by a multiplicative factor
(−1)η = 1. In other words, this follows from the fact that the
boundary of a plaquette has itself no boundary, ∂∂P = 0.

A. Observables

A gauge-invariant observable is obtained by considering
the product of the spins along any closed loop �, generating
a so-called Wilson loop W� = ∏

i∈� σi. The gauge invariance
follows from ∂∂� = 0. For loops � that are the boundary
of a surface S, i.e., � = ∂S, the corresponding Wilson loops
are obtained by taking the product of the enclosed plaquette
terms W∂S = ∏

P∈S AP, so they are coupled to the energy
density in S. High-temperature expansions can be used to
show [34,35] that 〈W�〉 ∼ e−α|S| where α is some function of
βJ and S is the minimal surface area enclosed by the loop, i.e.,
for which ∂S = �. At low temperature, however, any single
spin flip along � will invert the sign of W�, so the expecta-
tion of a Wilson loop vanishes exponentially with its length
〈W�〉 ∼ e−γ |�| where to leading order e−γ is the probability
of an unflipped spin, so e−γ ≈ (1 − e−4J/T ). This discrepancy
between high- and low-temperature calculations suggests the
existence of a finite-temperature phase transition. Indeed, this
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model is dual to a 3D Ising model [34,35] whose critical
temperature is well established numerically Tc ≈ 1.314J [36].

A system embedded on a topologically nontrivial manifold,
such as a cube with periodic boundary conditions or a punc-
tured cube, admits homologically nontrivial loops � 
= ∂S to
which the above high-temperature expansion does not apply.
These Wilson loops are gauge-invariant observables that are
decoupled from the energy. One such example, illustrated on
Fig. 1, is the loop which winds around the three-dimensional
torus in the z direction Wz.

To see that Wz is indeed decoupled from the energy,
consider the dual plane Sz which consists of all the edges
in the z direction with a fixed z coordinate (see Fig. 1).
Inverting all the spins in Sz leaves all plaquette terms AP

invariant because Sz intersects AP on an even number of edges.
On the other hand, Wz and Sz intersect on an odd number
edges, so flipping all spins in Sz inverts the value of Wz. We
conclude that, given any spin configuration σ , there exists
another configuration σ ′ obtained by flipping all the spins
in Sz such that H0(σ ) = H0(σ ′) and Wz(σ ) = −Wz(σ ′). We
encode one bit of information using the two ensembles of spin
configurations 	+ and 	− consisting of the ground states of
H0 with Wz = +1 and Wz = −1, respectively.

B. Stability against perturbation

To understand the robustness of this phase, let us repeat
the above argument in the presence of a generic perturbation
V = ∑

i vi to the Hamiltonian H = H0 + V , where each term
vi is a bounded function |v j | � K of all the spins within a
constant radius r away from spin i. Given a spin configuration
σ of energy H (σ ), consider the configuration σ ′ obtained
by flipping the spins in Sz. It is easy to see that the two
configurations have a vanishing energy density difference as
the volume V = L3 grows:

|H (σ ) − H (σ ′)|
V = |V (σ ) − V (σ ′)|

V � 4Kr

V1/3
. (5)

In the thermodynamic limit, thermal fluctuations will thus
not discriminate between the two sectors, so there is phase
coexistence. More strongly, the local density matrices of the
two different ensembles agree up to exponentially small error
on any finite-size patch, so that the energy difference is
exponentially small in L.

C. Thermal stability

Thermal stability is more subtle. Suppose we prepare a
ground state σ of H0 with a fixed value of Wz = w and let
the system thermalize. In the ground state, we have AP = 1
for all P, but in thermal equilibrium some of the AP will take
value −1. Excited states are obtained from the ground state by
flipping spins contained in dual-membranes: two-dimensional
submanifolds akin of the region Sz but which do not span an
entire plane. Just like in the two-dimensional Ising model, the
energy of such an error membrane M grows proportionally to
its boundary E = 2J|∂M|, so below a critical temperature the
membranes are confined. Despite this confinement, however,
at any nonzero temperature, we expect a constant density
of membranes. Since the sign of Wz is inverted every time
it intersects an error membrane, Wz averages to 0 in the

thermodynamic limit as 1 − e−γ Lz where e−γ is roughly the
density of error membranes.

Despite the vanishing of Wz, the system retains some infor-
mation about its initial configuration. After letting the system
interact with a heat bath for some time, suppose we were
to cool it down. Error membranes would slowly shrink and
disappear, returning the system to a spin configuration with
the same value Wz = w as initially, unless the thermalizing
and cooling processes have generated membranes that fused
into a large membrane that spans a homologically nontrivial
plane. Because error membranes are confined, the probability
of such an event vanishes in the thermodynamic limit.

While cooling the system back to T = 0 is not physically
possible, it shows that, in principle, the information is still
present in the system. In fact, the cooling phase does not need
to be implemented to read out the information. It is used here
only to illustrate that the information is still encoded in the
system, although in a hidden form. There exists an alternative
“algorithmic” procedure for retrieving the information. It con-
sists of reading out the thermal spin configuration σ entirely,
and recording the value of each individual spin. From this
knowledge, the value of each AP can be computed. The P
with AP = −1 indicate the boundary � of error membranes.
Then, an algorithmic procedure called decoding can be used
to determine what are the smallest membranes consistent
with these boundaries: arg minM{|M| : ∂M = �}. This may
be computationally expensive but can certainly be done in
principle. Inverting the spins contained in these minimal
membranes should return the system to its initial value of
Wz unless some error membranes have grown and percolated
to reach a macroscopic size. Thus, the self-correcting phase
truly corresponds to a membrane confinement phase. Thus, we
expect the self-correcting phase diagram to coincide with the
one obtained for confinement, which is dual to the 3D Ising
model with h = 0.

While measuring all the spins is impractical for a real
material, the protocol presented above could be of practical
use in a metamaterial, where spins are engineered systems
such as solid-state devices. For real materials, even if the
procedure is impractical, it does illustrate that the information
has not been irreversibly erased from the system.

D. General stability

We consider thermal stability in the presence of a gauge
symmetry-breaking field. Suppose a magnetic field V =
−B

∑
j σ j is added, energetically favoring σ j = +1. The

unique ground state σ 0 of H = H0 + V is the all spin-up
configuration, and has Wz = +1. The minimal energy con-
figuration σ 1 with Wz = −1 is obtained from σ 0 by flipping
all spins in Sz. Error membranes restricted to the plane Sz

have the same energetic cost as those in the two-dimensional
Ising model E = −2B|M| + 2J|∂M|. At first glance, the same
argument invoked for the Ising model suggests that large
error membranes will proliferate in this plane and result in a
configuration in the Wz = +1 sector, corrupting the memory.

However, at nonzero temperature, entropy will make the er-
ror membranes fluctuate in and out of the Sz plane. Outside the
plane, the magnetic field contributes positively to the energy.
There is a critical temperature where the entropy gained from
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fluctuating the error membrane in and out of Sz compensates
for the energy gained from restricting the error membrane to
Sz. Thus, the system does not magnetize even in the presence
of an external field, which is again just a restatement of
Elitzur’s theorem. The system with an external field is self-
dual and has been studied numerically in [37]. We expect the
self-correcting upper-temperature phase transition to coincide
with the topological phase reported in this reference. What is
less clear is whether a lower critical temperature is required to
prevent large error droplets from proliferating in the Sz plane.
We further investigate this question in Sec. V C.

V. NUMERICAL RESULTS

A. Setting

We verified the above claims numerically. The physical
process we are simulating is the following. The system is
prepared at some low temperature T0 with all spins up, except
in a single Sz plane where all spins are down, so initially Wz =
−1. With a positive magnetic field B, this initial configuration
is not a ground state because the magnetic field favors up
spins. The temperature is then slowly ramped up from T0 to
some holding temperature Thold. The system sits at this holding
temperature for some finite amount of time t , after which
the temperature is ramped back down to T0. At that time, we
measure the Wilson loop Wz to check if it retained information
about its initial value. Note that we do not need to run separate
experiments for the two initial values of Wz = ±1 since the
external field favors Wz = +1, i.e., the noise affecting the
encoded information is asymmetric. The challenging case is
when the system carries the information Wz = −1, and so we
focus on that case.

We use standard Monte Carlo simulations with Metropolis-
Hastings rule. A single Monte Carlo update implements both
single-spin flips and cluster updates corresponding to the
gauge symmetry. The conclusions we reach are independent
of the specific choice of updates. Each update consists of Ns

attempted single-spin flips, where Ns is the number of spins,
and Nv gauge cluster updates, where Nv is the number of
lattice vertices. This way, the number of Monte Carlo updates
corresponds to a physical measure of time, independent of
the lattice size. We fix T0 = 0.2J . Ramping the temperature
is performed with steps of �T = 0.05J . We use 5000 Monte
Carlo updates at each temperature. The system is held at Thold

for 10 000 Monte Carlo sweeps, before cooling back down to
T0. Results below are averaged over 1000 such temperature
sweeps.

B. Self-correction

Simulation results are shown in Fig. 2 where we report the
final expectation value of the Wilson loop as a function of
the holding temperature for various system sizes and external
fields. We emphasize that the main plot is not the expectation
values of the Wilson loop as a function of temperature during
a ramping process. Each data point is measured at T0, but
the measurement is preceded by a temperature ramp-up to
some holding temperature followed by a ramp-down. The data
are then plotted as a function of the holding temperature. An
example of a single temperature sweep is illustrated in the

FIG. 2. Expectation value of the Wilson loop 〈Wz〉 as a function
of the holding temperature Thold for various system sizes and ex-
ternal magnetic fields B. For sufficiently weak external fields and
sufficiently low holding temperatures, the system returns to its initial
value Wz = −1 with a probability that increases with system size L,
suggesting the existence of a self-correcting phase in the (Thold, B)
diagram. At B = 0.4J , we observe that the system of size L = 12 has
a higher error probability than L = 10 for all holding temperatures,
suggesting that this B exceeds the critical field value. The inset
illustrates one typical temperature sweep for two different holding
temperatures for a system of size L = 12. Each data point in the main
plots correspond to an average of 1000 such temperature sweeps.

inset for B = 0. The inset shows strongly polarized values of
〈Wz〉, in apparent conflict with our claim that should vanish
as 〈Wz〉 ≈ e−γ L at any finite temperature. However, this is due
to finite-size effects since γ ≈ − log(1 − e−4J/T ) ≈ 0.047 is
quite small.

We say that the system with parameters (Thold, B, J ) is in
the self-correcting phase when the probability that the system
returns to a different value of Wz decreases exponentially with
the system size L. We can verify this claim by fitting 〈Wz〉 as a
function of the system size in the subcritical region, which is
shown in Fig. 3.

Based on these results, we predict the existence of an
upper critical temperature Tc ≈ 1.31J and an upper critical
field 0.3J � Bc � 0.4J such that the system is self-correcting

FIG. 3. Final Wilson loop expectation as a function of the sys-
tem size for subcritical holding temperature Thold = 1.2J < Tc and
external field B = 0.2J < Bc. The result agrees with a fit 〈Wz〉 =
a exp(−bL) − 1, shown in the solid line.
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FIG. 4. A comparison of the final Wilson loop expectation value
for B = 0.2J and L = 8 (compare to Fig. 2) and the specific heat per
spin, calculated as a typical thermodynamic estimator, for the same
parameter values.

for Thold < Tc and B < Bc. The critical temperature is largely
insensitive to the magnetic field until a paramagnetic phase
is obtained. These observations are consistent with the well-
established critical temperature Tc ≈ 1.314J at B = 0 [36]
and more generally with the findings of [37] which shows an
upper critical field at Bc ≈ 0.225T which is 0.29J at T = Tc,
in agreement with our observation.

C. Lower critical temperature?

The 3D toric code is known to be a self-correcting quantum
memory [10,20]. Its Hamiltonian HQ = H + K is the sum of
Wegner’ classical gauge model, Eq. (4), and a quantum kinetic
term K that commutes with H . Because of this commutation,
the partition function factors Zβ (HQ) = Zβ (H ) × Zβ (K ) so,
in this case, the relations between the thermal properties of
the quantum and classical model are expected. But, in the
presence of a magnetic field, this factorization breaks and
the thermal stability of the classical model is not a direct
consequence of the stability of the quantum model.

In particular, the quantum model is protected from an exter-
nal magnetic field by the kinetic term, which gives it a spectral
gap [30–32]. The classical model is only protected by entropy,
an effect that we may term “topological order by disorder.”
For this reason, and as discussed in Sec. IV D, we expect
stability only at nonzero temperature. If we consider, for
instance, the case of B = 0.2J , the phase diagram proposed
in [37] predicts a lower critical temperature of T� ≈ 0.89J .
However, we do not observe this lower critical temperature
when simulating the system’s ability to self-correct. Figure 4
shows the expectation value of the Wilson loop as a function
of the holding temperatures and the specific heat as a function
of temperature. While the phase transition is clearly visible on

the specific head and coincides with the predictions of [37],
there is no sign of a transition in the self-correction data.

This discrepancy is not necessarily a problem. The phase
diagram represents the equilibrium properties of a system,
while self-correction is truly about the equilibration process
itself. It is possible that the equilibration process remains
exponentially slow below the lower critical temperature. It is
also possibly that the character of the equilibration process
changes at this transition, perhaps transitioning from an expo-
nential lifetime to a polynomial lifetime, which is difficult to
distinguish in the system sizes we have simulated. In any case,
it would be premature based on these simulations to conclude
that the system remains self-correcting all the way to T = 0,
and this question deserves further scrutiny.

VI. CONCLUSION

We have argued that a self-correcting memory can be real-
ized in a lattice system with bounded degrees of freedom and
local interactions if the Hamiltonian is endowed with a gauge
symmetry and is embedded on a topologically nontrivial
manifold. The gauge symmetry implies that the Hamiltonian
spectrum is exponentially degenerate. The nontrivial topology
gives rise to additional degeneracies that can be probed by
homologically nontrivial Wilson loops. Information can be
reliably stored in this Wilson loop and Elitzur’s theorem tells
us that the stored information will not respond to an external
field.

We have tested these predictions numerically on Wegner’s
3D Ising lattice gauge theory with an external magnetic field.
Our results are consistent with the existence of a phase in
the temperature/field diagram where the information is ex-
ponentially well retained as a function of the system size,
in agreement with the model’s previously established phase
diagram.

The argument for the stability of the model to external
fields relies on entropy, so is only expected to hold for a
nonzero temperature. A lower critical temperature has been
observed in previous conventional characterizations of the
model, but is not seen in our numerical study. This leaves open
the question of whether temperature is necessary to stabilize
the encoded information.
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