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Entanglement and information are powerful lenses to probe phases transitions in many-body systems.
Motivated by recent cold atom experiments, which are now able to measure the corresponding information-
theoretic quantities, we study the Mott transition in the half-filled two-dimensional Hubbard model using
cellular dynamical mean-field theory, and focus on two key measures of quantum correlations:
entanglement entropy and a measure of total mutual information. We show that they detect the first-
order nature of the transition, the universality class of the end point, and the crossover emanating from the
end point.
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Introduction.—The Mott transition is a metal-insulator
transition caused by electron-electron interactions in a half-
filled band [1,2]. As observed in a number of materials, it is
a first-order transition that ends at finite temperature at a
critical end point [2–9]. It plays a central role in the physics
of quantum materials [2,10]. It is possible to explain this
transition within the dynamical mean-field solution of the
paradigmatic model of strongly correlated electrons, the
Hubbard model [11]. That model can be mimicked accu-
rately by ultracold atom experiments in optical lattices
[12–15].
Recent experimental progress with single-atom micros-

copy has bridged quantum materials and quantum infor-
mation by measuring both the thermodynamics and the
information-theoretic entanglement of the Hubbard model
[16,17]. We take advantage of these recent experimental
advances to open a new window on the interaction-driven
Mott transition at half-filling.
The Mott transition offers a unique opportunity to study

information-theoretic measures of a first-order transition,
from its quantum low temperature limit all the way to its
finite-temperature critical end point and beyond. In the
supercritical regime, crossover phenomena associated with
the so-calledWidom line [18–20] are expected. Information-
theoretic measures have been used to probe quantum-critical
points [21–25] or finite-temperature continuous transition
[26] with the goal of understanding phases of matter as
different structures of entanglement distribution in a system.
Motivated by recent experiments with ultracold atoms

[17], we characterize the interaction-drivenMott transition in
the two-dimensional Hubbard model using quantum-infor-
mationmeasures, as generalized to fermions byZanardi [27].
The entanglement entropy between a single site and the rest

of the system has emerged as a useful tool to characterize
quantum phase transitions [23]. At finite temperatures
however, both entanglement and thermal fluctuations con-
tribute to the single-site entropy s1, which is therefore no
longer a measure of quantum entanglement only [28]. The
difference Ī1 ¼ s1 − s between the local entropy s1 and the
thermodynamic entropy s leads to a measure of total mutual
information that captures both classical and quantum corre-
lations between a site and its environment [29]. We demon-
strate that both s1 and Ī1 (a) pinpoint the first-order nature of
theMott transition by showing hysteretic behavior, (b) detect
the universal critical exponents of the Mott end point, and
(c) identify the crossovers emanating from the end point in
the supercritical region by showing sharp variations marked
by inflections.
Finite-temperature studies of information-theoretic mea-

sures of the Hubbard model have appeared, e.g., on the
kagome lattice [30], but previous studies of the Mott
transition focused on bosonic systems [16,31,32] or on
fermionic systems at zero temperature [21,24,25,33].
Model and method.—We consider the single-band

Hubbard model on the square lattice in two dimensions
(2D) H¼−

P
hijiσtijc

†
iσcjσþU

P
ini↑ni↓−μ

P
iσniσ, where

c†iσ and ciσ operators create or destroy an electron of spin σ

on site i, niσ ¼ c†iσciσ is the number operator, tij is the
nearest neighbor hopping, μ is the chemical potential, and
U the onsite Coulomb repulsion. We solve this model
within plaquette cellular dynamical mean-field theory
(CDMFT) [34–36], which is a cluster extension of dynami-
cal mean-field theory (DMFT) [11]. The cluster in a bath
problem is solved using the continuous-time quantum
Monte Carlo method [37–39] based on the hybridization
expansion of the impurity action (CT-HYB). Further details
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are in the companion article [40]. We work in units t ¼ 1,
kB ¼ 1.
In the model that we study, the Mott transition is masked

by long-range antiferromagnetic order. Nevertheless, intro-
ducing frustration decreases the antiferromagnetic transition
temperature and can unmask the Mott transition [41,42].
A model with frustrated antiferromagnetism would lead to
increased fermionic sign problems, so we stick with the
simpler model. While it will not be possible to compare
quantitatively our low-temperature results with experiments
where antiferromagnetism is frustrated, we do not expect
qualitative differences. In calculations we do not allow
antiferromagnetic symmetry breaking, so theMott transition
extends all the way to zero temperature.
Phase diagram.—The temperature versus interaction

strength phase diagram of the half-filled 2D Hubbard
model obtained by CDMFT on a 2 × 2 plaquette is known
[43–45]. As shown in Fig. 1(a), at low T and finite U, the
electron-electron correlations produce a first-order transi-
tion between a metal and a Mott insulator. This transition
terminates in a second-order critical end point at ðUc; TcÞ.
From the end point emanates a crossover line, the Widom
line, across which the correlation length peaks [18–20].

Near the end point, the loci of other response functions
extrema converge into the Widom line [18,19]. Hence, the
Widom line is a high-temperature precursor of the first-
order Mott transition.
A convenient way to construct the T −U phase diagram

of the half-filled model is to monitor the behavior of double
occupancy DðUÞT [see Fig. 1(b)]. For T < Tc, hysteresis
loops reveal the coexistence region Uc1ðTÞ < U < Uc2ðTÞ
between metal and insulator. At T ¼ Tc the coexistence
region closes, DðUÞ is continuous with an infinite slope
at Uc, and thermodynamic quantities such as double-
occupancy fluctuations ∂D=∂U diverge, thereby signaling
a diverging correlation length. For T > Tc, DðUÞ still
shows an inflection point. We use the inflection point in
DðUÞT to estimate the Widom line (see also companion
article [40]).
The important aspect is that thermodynamic properties,

from low temperature up to high temperature, are con-
trolled by the transition and its associated supercritical
crossover. Here we extend this connection to information-
theoretic measures.
Local entropy and entanglement entropy.—The entropy

of a subsystem A is defined as sA ¼ −TrA½ρA ln ρA�, where
the reduced density matrix ρA is obtained by tracing the
complement B of A from the global density matrix,
ρA ¼ TrB½ρAB�. It is a measure of the lack of information,
or uncertainty, in the state of A. At T ¼ 0, this uncertainly is
due to the entanglement between A and B, so sA is called
entanglement entropy. Here we focus on the local entangle-
ment entropy [24,27], where A is a site of the lattice and B
the remaining sites. The state space of a single site is spanned
by fj0i; j↑i; j↓i; j↑↓ig. An important simplification occurs
due to spin conservation, which ensures that the reduced
density matrix is diagonal [27], ρ ¼ diagðp0; p↑; p↓; p↑↓Þ,
where pi, with i ¼ f0;↑;↓;↑↓g, is the probability for a site
to be empty, occupied with a spin up or down particle or
doubly occupied. One hasp↑↓ ¼ hni↑ni↓i ¼ D,p↑ ¼ p↓ ¼
hni↑ − ni↑ni↓i, and p0 ¼ 1–2p↑ − p↑↓. Thus s1 becomes
s1 ¼ −

P
ipi lnðpiÞ, that can be easily calculated with

CDMFT and measured in ultracold atom experiments
[17]. For Hubbard-like Hamiltonians, s1 emerged as a useful
tool to detect phase transitions and critical behavior, espe-
cially at T ¼ 0 where it measures entanglement [23–25,
33,46,47]. Our first contribution is to extend these studies to
the first-order Mott transition from its low temperature
quantum regime to the critical end point and supercritical
crossovers, where s1 acquires thermal contributions and is no
longer a measure of quantum entanglement only [28].
The local entropy s1 is shown as a function of U and

different temperatures in Figs. 2(a), 2(b). s1ðUÞ monoton-
ically decreases from a maximum value of ln 4 at U ¼ 0 to
asymptotically reach the minimum value of ln 2 forU → ∞.
In these limits, ρA has equal populations in, respectively,
four and two states. Physically, U suppresses the charge
fluctuations and therefore the number of available states.

(a) (b)

FIG. 1. (a) Temperature T versus interaction strength U phase
diagram of the 2D Hubbard model at half filling (n ¼ 1) within
plaquette CDMFT. Coexistence associated with the first-order
transition between a metal and a Mott insulator terminates at the
second-order critical end point ðUc; TcÞ. From the end point
emerges a crossover line (Widom line) defined by the maxima in
the correlation length. Here we estimate the Widom line by the
locus of the inflection point in the double occupancy DðUÞT at
different temperatures (open red circles, TW). This line overlaps
with the loci of the inflection points in the local entropy s1ðUÞT
(blue crosses, Ts1 ) and in the total mutual information Ī1ðUÞT ¼
s1 − s (green squares, TĪ1 ), where s is thermal entropy. (b) Double
occupancy D versus U at n ¼ 1 and different temperatures. For
T < Tc, hysteresis appears when sweeping U in the forward and
reverse directions. Arrows show the sweep direction.
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In information theory language, a larger U leads to more
knowledge about the site occupation, and hence to a decrease
of its entropy.
Contrary to s, which is constrained to obey ∂s=∂T > 0

for reasons of thermodynamic stability, ∂s1=∂T < 0 is
allowed. As can be seen by comparing the results for T ¼
1=100 and T ¼ 1=10 in Fig. 2(b), this occurs on the
metallic side because, at fixed filling, the number of
available states on a single site can decrease when DðTÞ
decreases with increasing T, a phenomenon which is
known to occur at low T [11,48–50]. For T < Tc, s1ðUÞ
shows hysteresis loops at the Mott transition [see Fig. 2(b)],
with ðs1Þins < ðs1Þmet since double occupancy is smaller in
the insulating state. For T ≥ Tc, s1ðUÞT shows an inflection
point. Approaching Tc from above, the first derivative
∂s1=∂U becomes more negative and eventually tends to
minus infinity at the Mott end point [see Fig. 2(c)]. This
follows from ð∂s1=∂DÞð∂D=∂UÞ with ∂s1=∂D regular
and ∂D=∂U ∼ −jU −Ucj−1þ1=δ with δ > 1 [39]. The locus
of the inflection point of sðUÞT at different temperatures is
shown in Fig. 1(a) and defines a crossover which is a
precursor of the Mott transition in the supercritical region.
Moreover, the asymptotic behavior of s1ðUÞ at Tc allows us
to extract directly the critical exponent δ. Although critical
exponents are not generally observable in s1 [24], here this
is possible since s1 depends only on double occupancy.
The loci of the inflections of s1ðUÞT and of DðUÞT do not
need to coincide in the supercritical region, they only need
to converge towards each other at the critical end point.
Surprisingly, inspection of Fig. 1(a) shows that the loci of
inflections in s1ðUÞT and DðUÞT remain close, up to high
temperature, suggesting an interesting connection between

fluctuations of the double occupancy, ∂D=∂U, and varia-
tions in the entanglement entropy, ∂s1=∂U [25]. Overall,
these findings provide a strong link between thermody-
namics and entanglement: the Mott transition, critical
exponents, and associated high-temperature crossovers,
can be determined solely from the local entropy s1, without
knowledge of the order parameter of the transition.
Total mutual information.—The mutual information

IðA∶BÞ captures the total correlations between two systems
A and B. In particular, it takes value 0 if and only if the
two systems are uncorrelated ρAB ¼ ρA ⊗ ρB. It is defined
as IðA∶BÞ ¼ sA þ sB − sAB, and appears, for instance, in
classical and quantum information theory [51,52].
Two complementary approaches are possible to inves-

tigate the behavior ofmutual information at a phase transition
in lattice systems. The first one aims to study the large scale
behavior of the mutual information at the phase transition by
scaling, i.e., by analyzing how the mutual information scales
as a function of thevolumeof the systemA. It has been shown
in simple systems that the mutual information indeed shows
critical scaling and subleading corrections to the area law
[53] (according to which the mutual information scales at
most proportionally to the size of the boundary separating A
and B [54,55]). A second approach focuses instead on a
single site and aims to study the behavior of the mutual
information between a single site and its environment as a
function of the tuning parameters of the phase transition.
Here, we follow the latter approach. As we shall see,

advantages of this approach include simplicity of the
calculations and the possibility of experimental confirma-
tions with ultracold atoms. Specifically, we are interested in
the mutual information between a given site i and the rest of
the lattice, averaged over all sites. For the site labeled i ¼ 1,
we have Ið1∶f> 1gÞ ¼ s1 þ sf>1g − sf>0g where we
denote by f> kg the set of sites with indices greater than
k, so f> 0g is the entire lattice. For the site labeled i ¼ 2,
the mutual information between i ¼ 2 and the rest of the
lattice f1g ∪ f> 2g would lead to double counting of the
correlations between site 1 and 2, that have already been
accounted for in the quantity Ið1∶f> 1gÞ. To avoid such
double counting, we trace over site 1, that has already been
considered, and compute the mutual information between
site 2 and the remaining sites f> 2g. Continuing this
process, we define the total mutual information between
a single site and the rest of the lattice as

Ī1 ¼
1

N

XN

i¼1

Iði∶f> igÞ ¼ 1

N

XN

i¼1

ðs1ðiÞ þ sf>ig − sf>i−1gÞ:

ð1Þ

It is easy to see from this last form that most terms cancel,
leaving Ī1 ¼ ðPN

i¼1 s1ðiÞ=N − sÞ, where s is the thermody-
namic entropy, defined as the entropy of the entire lattice
divided by the number of sites. For a translationally invariant

(a)

(b)

(c)

FIG. 2. (a) Local entropy s1 versus U at n ¼ 1 and T ¼ 1=10
(circles). Horizontal lines mark ln 4 (for U ¼ 0) and ln 2 (for
U ¼ ∞). (b) Enlargement of s1 versus U at n ¼ 1 for T ¼ 1=10
and T ¼ 1=100 (triangles) close to the Mott transition. Inflection
point for T > Tc and jumps for T < Tc are visible. (c) Increase
in the slope ∂s1=∂U as one approaches Tc from above. The
positions of the minima are shown as blue crosses in Fig. 1(a).
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system, all s1ðiÞ are equal, so the total mutual information
further simplifies to the difference between the local entropy
and the thermodynamic entropy Ī1 ¼ s1 − s. This is the
quantity studied in Ref. [17]. Contrary to the usual measure
of mutual information, it is not equal to 2s1 at zero
temperature.
Figure 3(a) shows Ī1 as a function of U and different

temperatures (open symbols). The thermodynamic entropy
sðUÞ is shown in Fig. 3(c) and discussed in the companion
article [40]. Far from the Mott transition, Fig. 3(a) for Ī1
shows that we find quantitative consistency with exper-
imental data at higher temperature (filled squares; see also
Supplemental Material [56]). At lower temperature, Ī1
at weak interaction is larger than Ī1 at strong interaction,
because for weaker interaction the states are more
extended; hence the density matrix does not factor in
position space. Nevertheless Ī1 can be quite large in the
Mott insulator. At finite U electrons are localized, but their
spins lock into singlet states due to the superexchange
mechanism [43,45,57]. Hence they are correlated and Ī1
cannot be zero. That is a basic message of the CDMFT:
localization along with short-range correlations are key
ingredients of the Mott transition, and this remarkably
shows up in Ī1.
Consider now the vicinity of the Mott transition. For

T < Tc, Ī1 shows hysteresis [triangles in Fig. 3(a)].
Although s1 is larger in the metal than in the insulator
[Fig. 2(b)], the entropy s of the insulator is much smaller
than that of the metal [Fig. 3(c)], leading to ðĪ1Þmet < ðĪ1Þins

across the Mott transition. The latter inequality seems
counterintuitive, but may be understood as follows: while
local charge correlations are stronger in a delocalized
conducting state, a localized insulating state leads to a
stronger superexchange coupling, which results in
increased spin correlations that overwhelm the loss of
charge correlations [43,45,57]. For T ≥ Tc [circles and
diamonds in Figs. 3(a),(b)], Ī1 displays nonmonotonic
behavior: there is a local minimum that comes from the
displacement of the local minimum in −s [Fig. 3(c)] caused
by the monotonic decrease of s1ðUÞ. The rapid increase
beyond the minimum reflects the steep slopes in sðUÞ
and s1ðUÞ, marked by inflections (vertical red dashed
lines), that eventually become infinite at ðUc; TcÞ since
both quantities scale as −sgnðU −UcÞjU −Ucj1=δ. For the
Ising universality class, to which the Mott transition
belongs, Ī1 scales the same way Ī1 ∼ sgnðU − UcÞjU −
Ucj1=δ [40]. The locus of the inflection marking the most
rapid increase of Ī1ðUÞT at different temperatures defines
the crossover line TĪ1 in the T − U phase diagram [see
squares in Fig. 1(a)]. Therefore, Ī1 detects the Mott
transition, its supercritical crossover, and critical exponent
at the Mott end point.
Conclusion.—We have characterized the Mott transition

in the 2D Hubbard model with CDMFT using information-
theoretic measures. The local entropy s1 and the total
mutual information Ī1 both detect the first-order nature of
the transition, the criticality of the Mott end point, and the
supercritical crossover. Our results are consistent with
ultracold atom experiments of Ref. [17] and provide
specific predictions for information-theoretic measures in
the low-temperature region that may soon be accessible.
In highly frustrated optical lattices, such as the triangular

lattice, one can, in principle, measure s1 and Ī1 across the
Mott transition and its supercritical crossover. One could
thus verify our predictions of sharp variations of these
quantities as a function of U, characterized by inflection
points (above Tc) and by hysteresis (below Tc).
At the theory level, our information-theoretic description

of a first-order transition from its quantum low temperature
limit (T ≪ Tc), to its finite-temperature critical end point
(at Tc), and further on in the supercritical region (T > Tc)
offers a new kind of “criticality” [45,57], where strong
variation of entanglement properties are not associated with
a quantum critical point between ordered phases, but by
proximity to a critical end point. Our finding of a deep link
between the behavior of information-theoretic measures
and of thermodynamic quantities can be extended to other
first-order transitions ending in a critical end point, such
as those found in electron systems [20,40,45,57], in spin
systems [26,58], and quark matter [59].
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FIG. 3. (a) Total mutual information Ī1 versus U at n ¼ 1 for
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1=12, and T ¼ 1=50. (c) Thermodynamic entropy s versus U at
n ¼ 1 for the same temperatures of panel (b). In all panels, a
dashed vertical line marks the inflection point while the shaded
area marks the coexistence between metal and insulator. The loci
of the inflections in Ī1ðUÞT are shown as green squares in Fig. 1(a).
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Sport (Québec), Calcul Québec, and Compute Canada.

*Corresponding author.
giovanni.sordi@rhul.ac.uk

[1] N. F. Mott, Metal-Insulator Transitions (Taylor & Francis,
London, 1974).

[2] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator
transitions, Rev. Mod. Phys. 70, 1039 (1998).

[3] D. B. McWhan, J. P. Remeika, T. M. Rice, W. F. Brinkman,
J. P. Maita, and A. Menth, Electronic Specific Heat of
Metallic Ti-Doped V2 O3, Phys. Rev. Lett. 27, 941 (1971).

[4] P. Limelette, A. Georges, D. Jerome, P. Wzietek, P. Metcalf,
and J. M. Honig, Universality and critical behavior at the
Mott transition, Science 302, 89 (2003).

[5] M. Matsuura, H. Hiraka, K. Yamada, and Y. Endoh,
Magnetic phase diagram and metal-insulator transition of
NiS2−xSex, J. Phys. Soc. Jpn. 69, 1503 (2000).

[6] K. Kanoda, Electron correlation, metal-insulator transition
and superconductivity in quasi-2D organic systems,
ðETÞ2X, Physica (Amsterdam) 282C-287C, 299 (1997),
materials and mechanisms of superconductivity high tem-
perature superconductors V.

[7] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D.
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