Lecture 2: Double quantum dots

- Basics

- Pauli blockade

- Spin initialization and readout in double dots

- Spin relaxation in double quantum dots

Jason Petta, Princeton University
Quick Review

Quantum dot

Single spin qubit

Qubit states:

| 1 ⟩
| 0 ⟩

Long spin relaxation time, $T_1 \sim 1$ sec.

Jason Petta, Princeton University
Review: Coulomb blockade and charging in a single dot

Charging energy $E_c = \frac{e^2}{2C}$

Energy V_G

Kastner, RMP 64, 849 (1992)

Sample 1a

Sample 1b

Jason Petta, Princeton University
Double dot charge stability diagram

Two limits:

\(C_M \rightarrow 0 \)

\(C_M/C_{(1,2)} \rightarrow 1 \)

Double dot review article: van der Wiel et al., RMP 75, 1 (2003)

Jason Petta, Princeton University
Double dot charge stability diagram

In between these limits:

Double dot review article: van der Wiel et al., RMP 75, 1 (2003)

Jason Petta, Princeton University
Experimental setup

Parameters:
T = 0.030 K, Feature size < 100 nm, Frequency = 35 GHz

Jason Petta, Princeton University
Double dot measurements

Charge transport

Charge sensing

QPC sensing: Field et al., PRL 70, 1311 (1993)

Petta et al., PRL 93, 186802 (2004)
Elzerman et al., PRB 67, 161308 (2003)
Charge -vs- spin qubits

Charge physics: The one-electron regime
(1,0) vs. (0,1)

Spin physics: The two-electron regime
(0,2) vs. (1,1)

Jason Petta, Princeton University
Gate tunable interdot tunnel coupling

\[\left\{ \begin{array}{c} M \\ N \end{array} \right\} = \frac{1}{2} \left[1 - \frac{\varepsilon}{\Omega} \tanh \left(\frac{\Omega}{2kT} \right) \right] , \quad \Omega = \sqrt{\varepsilon^2 + 4t^2} \]

Jason Petta, Princeton University
Photon assisted tunneling in a one-electron double dot
Charge qubit spectroscopy

On resonance: $\alpha \varepsilon = \sqrt{(hf)^2 - 4t^2}$

$V_t \text{ (V)}$, $2t \text{ (GHz)}$

-1.08, 2.4
-1.04, 6.2
-1.02, 9.2
-1.01, 13.2

See also: Oosterkamp et al., Nature 395, 873 (1998)

Jason Petta, Princeton University
Charge relaxation and dephasing measurement

Petta et al., PRL 93, 186802 (2004)

Jason Petta, Princeton University
Charge qubit: Coherent oscillations

Enhancement in T_2 at $\varepsilon=0$

Vion et al., Science (2002)

Hayashi et al., PRL (2003), K. D. Petersson et al., PRL (2010)

Jason Petta, Princeton University
Single spin qubits -vs- Singlet-triplet qubits

Single spin qubit (Loss and DiVincenzo)

\[|1\rangle \quad \uparrow \quad |0\rangle \quad \downarrow \]

\[E_{\text{Zeeman}} \]

Encoded spin qubit- “singlet-triplet” qubit (J. Levy)

Qubit encoded in two-electron spin states

\[
|S\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \quad m_s=0 \\
|T_0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \quad m_s=0
\]

Basis: S and \(T_0 \), \(m_s=0 \)

Insensitive to field fluctuations

\[\rightarrow \text{decoherence free subspace} \]

\[
|T_+\rangle = |\uparrow\uparrow\rangle \quad m_s=1 \\
|T_-\rangle = |\downarrow\downarrow\rangle \quad m_s=-1
\]

Work in magnetic field, \(T_+ \) and \(T_- \)

not relevant due to Zeeman energy

Jason Petta, Princeton University
The two electron regime

(1,1) singlet-triplet splitting:
\[j=\frac{4t^2}{U}=0.4 \text{ } \mu\text{eV} \ll kT \]
with \(U \sim 4 \text{ meV}, t \sim 20 \text{ } \mu\text{eV} \)

(0,2) singlet-triplet splitting:
Theory: \(J \sim 0.3 \text{ meV} \)
Expt.: \(J \sim 0.1 \text{ to } 1 \text{ meV} \)

Kyriakidis et al., PRB 66, 035320 (2002)
Ashoori et al., PRL 71, 613 (1993)

Jason Petta, Princeton University
Double dot finite bias spectroscopy

Finite bias “triangles”

(1,0) (1,1) (0,1) (0,0)

Jason Petta, Princeton University
Singlet-triplet spin blockade in dc transport

Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System

K. Ono, D. G. Austing, Y. Tokura, S. Tarucha

Jason Petta, Princeton University
Singlet-triplet spin blockade in dc transport

(0,2) \rightarrow (1,1) transport is allowed

(1,1) \rightarrow (0,2) transport is spin blocked

Jason Petta, Princeton University
Singlet-triplet spin blockade in charge sensing

\[\Gamma_R \quad \Gamma_{\text{int}} \quad (0,0) \to (0,1) \to (1,0) \quad \Gamma_L \]

\[G_{S2} \left(10^{-3} \text{ e}^2/\text{h} \right) \]

(a) \(N=1, 0.1 \text{ T} \)
+0.5 mV

(b) \(N=2, 0.1 \text{ T} \)
+0.5 mV

(c) \(N=1, 0.1 \text{ T} \)
-0.5 mV

(d) \(N=2, 0.1 \text{ T} \)
-0.5 mV

Jason Petta, Princeton University
• Prepare spin in ground state
• “Spin to charge conversion”
• T_1, T_2^*, T_2
• ESR for single spin rotations
• Exchange interaction
• Standard semiconductor fabrication

Jason Petta, Princeton University
Spin singlet state initialization

\[(0,1) \quad (0,2) \quad (1,1) \quad (1,2) \]

\[V_L (mV) \quad V_R (mV) \]

\[S \approx kT \]

Jason Petta, Princeton University
• Prepare spin in ground state

• “Spin to charge conversion”

• T_1, T_2^*, T_2

• ESR for single spin rotations

• Exchange interaction

• Standard semiconductor fabrication

Jason Petta, Princeton University
Spin state measurement (spin-to-charge conversion)

Singlet measurement

Jason Petta, Princeton University
Spin state measurement (spin-to-charge conversion)

Triplet measurement

Jason Petta, Princeton University
• Prepare spin in ground state

• “Spin to charge conversion”

• T_1, T_2^*, T_2

• ESR for single spin rotations

• Exchange interaction

• Standard semiconductor fabrication

Jason Petta, Princeton University
Spin Relaxation and Dephasing: The Two-Electron System

Jason Petta, Princeton University
Pulsed-Gate Measurement of Spin Relaxation

Jason Petta, Princeton University
Pulsed-Gate Measurement of Spin Relaxation

Jason Petta, Princeton University
Pulsed-Gate Measurement of Spin Relaxation

Jason Petta, Princeton University
Pulsed-Gate Measurement of Spin Relaxation

Jason Petta, Princeton University
Spin relaxation: Getting stuck in (1,1)

In “measurement triangle”

dark: transition to (0,2) occurs

light: transition to (0,2) blockaded

Jason Petta, Princeton University
Enhanced, energy-dependent relaxation at zero field

Jason Petta, Princeton University
Effective nuclear field from hyperfine interaction

Large ensemble with random spin orientations, slow internal dynamics...

Quasistatic effective field

\[B_{nuc} = b_0 \sum_k |\psi(r_k)|^2 I_k \]

\[\text{rms } B_{nuc} = b_0 \sqrt{I_0(I_0 + 1)/N} \]

GaAs: \(b_0 = 3.47 \text{ T}, \ I_0 = 3/2 \)

Our device: \(N \sim 10^6 - 10^7 \)

\(B_{nuc} \sim 2 - 6 \text{ mT}, \ t_{nuc} \sim 3 - 10 \text{ ns} \)

Jason Petta, Princeton University
\[B_{\text{Zeeman}} \sim B_{\text{Nuclear}} \]

\[B_{\text{Zeeman}} \gg B_{\text{Nuclear}} \]

\[B_{\text{Nuclear}} \]

\[B_{\text{Total}} \]

\[B_{\text{Zeeman}} \]

\[T_1, T_2 \text{ short} \]

\[T_1 \text{ long}; T_2 \text{ short} \]

Jason Petta, Princeton University
Measuring the nuclear field: Energy dependence of tunnel rates

Deviation above 1 ms
Additional decay mechanism?

\[\frac{t(B)}{t(0)} = \left(\frac{B}{B_{nuc}} \right)^2 + 1 \]

\[B_{nuc} = 2.8 \pm 0.2 \text{ mT} \]

\[t_{nuc} \sim 10 \text{ ns} = T_2? \]

Jason Petta, Princeton University