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2Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
∗benjamin.bourassa@usherbrooke.ca

Abstract—Arikan’s recursive code construction was designed
for memoryless channels, but was recently shown to also polar-
ize channels with finite-state memory. The resulting successive
cancellation decoder has a complexity that scales like the third
power of the channel’s memory size. Furthermore, the polar code
construction was extended by replacing the block polarization
kernel by a convoluted kernel. Here, we extend the polar code
efficient decoding algorithm for channels with memory to the
family of convolutional polar code. We use numerical simulations
to study the performance of these algorithms for practically
relevant code sizes and find that the convolutional structure
outperforms the standard polar codes on a variety of channels
with memory.

I. INTRODUCTION AND BACKGROUND

In some communication channels, errors tend to occur in
burst which motivates the search for good error correcting
protocols tailored to correlated noise models. Polar codes
[1] are well known to achieve the capacity on symmetric
memoryless channels and it was shown in [2] that they also
achieve polarization on channels with memory. The successive
cancellation decoder can be adapted to a noise channel with a
d-state memory at the expense of an d3 increase in complexity
[3].

In [4], a generalization of polar codes was proposed which
replaces the block-structured polarization kernel by a convo-
lutional structure. The main motivation of this generalization
is that it preserves the efficiency of successive cancellation
decoding while significantly extending the code family. The
design and analysis of convolutional polar codes are most
easily formulated in terms of tensor networks. The efficiency
of successive cancellation decoding of convolutional polar
codes is a simple corollary of a well established fact in quan-
tum many-body physics [5]. In [6], analytical and empirical
evidence showed that convolutional polar codes outperform
regular polar codes on memoryless channels both asymptoti-
cally and for finite code size, with only a small constant factor
decoding and encoding overhead.

Here, we use tensor networks to describe how the con-
volutional polar code’s successive cancellation decoder can
be adapted to channels with a d-state memory with a d3

complexity increase. For regular polar codes, this decoding
algorithm reduces to the one of [3]. Furthermore, we use
numerical simulations to investigate the performance of polar
codes and convolutional polar codes on channels with memory,

and find that in all cases, convolutional codes outperform the
original construction.

A. Channels with finite-state memory

A channel with a d-state memory consists of a collection
of d channels WC(Y |X) labeled by an internal state C ∈
{1, 2, . . . d}. When the channel is in state C, the transmitted
symbol X evolves according to the corresponding channel.
Between each transmitted symbol, the channel’s internal state
evolves according to a Markov chain PC→C′ . When this
Markov chain is ergodic, it has a unique stationary distribution
P (C), which can be used to define the average channel

W (Y |X) =
∑
C

P (C)WC(Y |X). (1)

For sake of illustration, we will consider the Gilbert-Elliott
channel [7] which has two internal states, labeled G for Good
and B for Bad. When the channel is in state G, the transmitted
bits are affected by a Binary Symmetric Channel BSC(hG),
and when the channel is in state B, the transmitted bits are
affected by BSC(hB). The good channel is less noisy than the
bad channel, meaning hG < hB .

B. Interleaving

The simplest method to mitigate burst errors is to interleave
the bits – i.e., permute their order – before transmission and
then apply the reversed interleaver upon reception. Denoting
an N -bit permutation by Π and the original channel with
memory acting on N bits by WN (Y N1 |XN

1 ), the effective
channel produced by interleaving is

WI(Y
N
1 |XN

1 ) =
1

N !

∑
Π

WN (Π(Y N1 )|Π(XN
1 )). (2)

This is an exchangeable sequence of channels and de Finetti’s
theorem [8] shows that as N → ∞, the channel experienced
by any finite bit sequence approaches an i.i.d. channel.

The main drawback of interleaving is the incurred latency.
Moreover, interleaving degrades the channel by throwing away
potentially useful information. In other words, this technique
does not take advantage of the existing structure in the channel,
so the resulting performances are typically suboptimal.



C. Tensor Networks

Tensor networks are a computational and conceptual tool
developed in the context of quantum many-body physics [5],
[9]. Similar to graphical models used in coding theory, e.g.
factor graph, they are used as compact representations of
correlated distributions involving a large number of random
variables. Recently, computational problems in coding theory
have been recast in the tensor network formalism [10], a
connection which has found several applications [4], [11],
[12], [13].

For the current purposes, rank-r tensor is a real-valued array
Ai1i2...ir with r indices, where each discrete index ik has a
finite range |ik| = χk called bond dimension. Graphically,
we can represent this object by a node with r open edges
attach to it, where edge k represents index ik. Given two such
tensors (not necessarily of equal rank) Ai1i2...ir and Bj1j2...jq ,
a tensor contraction is represented graphically by joining one
edge from A with one edge from B, and is only allowed if
these edges have the same bond dimension. For instance, if
|i3| = |j4| = χ, then

=

. (3)

Algebraically, this tensor contraction corresponds to identify-
ing the joined indices and summing over its value, e.g.,

χ∑
s=1

Ai1i2s...irBj1j2j3s...jq = Ck1...kr+q−2 , (4)

and results in a tensor C of rank r+q−2. A tensor network is
a diagram containing multiple tensors joined by many edges,
and it generalizes the concept of matrix multiplication in a
very natural way.

Storing the entries of a tensor network requires an array of
size equal to the product of the bond dimension of its non-
contracted bonds, so it scales exponentially with the number
of non-contracted bonds. For instance, if all bonds of tensors
A and B above have dimension χ, then A ∈ Rχ6

, B ∈ Rχ4

,
and C ∈ Rχ8

. Thus, only tensor networks with a few non-
contracted bonds are of computational interest. Given such a
tensor network with a small number of non-contracted bonds,
the computational task of evaluating the corresponding array
– i.e., summing over all the contracted bonds – is in general
computationally hard (#P-hard [14]). This is because the tensor
networks obtained at intermediate steps of the contraction will
generally have many open bonds.

Despite this general hardness, some tensor networks can
be efficiently evaluated. It is the case of networks with the
geometry of chains or more generally trees [9], which can
be evaluated using standard dynamical programming methods.
This is a simple extension of a well known fact in coding the-
ory, that belief propagation is exact and efficient on loop-free
graphs (trees). More generally, the complexity of evaluating a

tensor network scales exponentially with the network’s tree-
width [14] [15].

As we will explain in the next sections (see ref. [10]), some
coding problems are naturally formulated in terms of tensor
networks and this connection facilitates the conception of
new coding schemes as well as the implementation of certain
decoding algorithms. In particular, previous work connecting
tensor networks to polar codes with i.i.d. channels [4] naturally
extends to channels with memory.

II. DECODING ALGORITHM

A. Channel model as a tensor network
A binary discrete memoryless channel W is completely

described by a stochastic matrix W (Y |X) where X denotes
the input and Y the output. This is a rank-2 tensor with one
bond representing the input X and one bond representing the
output Y , with bond dimensions equal to the corresponding
alphabet sizes. The i.i.d. channel acting on an N -symbol
sequence XN

1 can be represented graphically as a rank-2N
tensor as follows

...
. (5)

The tensor network representing a channel with a d-state
memory acting on N symbols is a chain which combines rank-
2 and rank-4 tensors (and rank-1 tensors on its boundary) given
by

...
.

(6)
This structure is quite familiar in condensed matter physics
where it goes under the name matrix product operator (MPO)
[16]. The horizontal bonds all have dimension d, the size of
the channel’s memory, while the top vertical bonds have the
dimension of the input alphabet X and lower vertical bonds
have the dimension of the output alphabet Y . The rank-2
tensors are the stochastic matrices PC→C′ defining the channel
with memory. For the case of the Gilbert-Elliott channel, this
would be

. (7)

A rank-4 tensor can be thought of as a matrix of matrices,
i.e. for fixed values of i and j, the object Ai,j,k,l is a rank-2
tensor, a.k.a. a matrix. From this perspective, for fixed values
C and C ′ of its horizontal bonds, the rank-4 tensors appearing
in Eq. 6 is the matrix δC,C′WC where δ denotes the Kronecker
delta. In the specific case of the Gilbert-Elliott channel, this
would be

. (8)



Fig. 1. The likelihood L(U i
1|Y N

1 ) expressed as a tensor network. The
encoding circuit corresponds to a convolutional polar code, or to a regular
polar code if the shaded gates are removed. The channel is one with memory
described at Eq. 6, but could be replaced by an i.i.d. channel by replacing the
tensor network in the dotted region by Eq. 5.

Finally, the rank-1 tensor s1 is the stationary distribution
P (C) while the rank-1 tensor sN is the vector containing
all 1’s. These respectively encode the fact that when the first
bit is transmitted, the channel’s memory is sampled from its
uniform distribution and that at the end of the transmission,
the channel’s memory can take any value.

B. Decoding as tensor network contraction

A code can be defined by a reversible encoding matrix G
which maps some input sequence UN1 to some output sequence
XN

1 = GUN1 , with some set F of input bits UF frozen to the
value 0. The non-frozen bits UF

c

(c denotes complement)
carry the raw data. The channel maps XN

1 to Y N1 , and
maximum likelihood decoding given received message Y N1
consists in optimizing WN (Y N1 |GUN1 ) over UF

c

, and where
the bits UF are fixed to 0.

Successive cancellation decoding is a simplification of this
procedure where the global optimization over UF

c

is broken
into a sequence of optimizations over individual bits of UF

c

.
Moreover, each optimization is conditioned on the value of
previously decoded bits, and freezes to 0 only the bits of UF

c

with a lower index value. In other words, for some i ∈ Fc,
the decoded value is

argmax
Ui

∑
UN

i+1

WN (Y N1 |GUN1 ), (9)

where the bits Uj , j < i are fixed either to 0 if j ∈ F or to
their previously decoded value if j ∈ Fc.

The likelihood L(U i1|Y N1 ) =
∑
UN

i+1
WN (Y N1 |GUN1 ) being

optimized at Eq. 9 can be represented as the tensor network of
Fig. 1. In this representation, a single bit Ui = 0 is represented
by the rank-one tensor

(
1
0

)
while Ui = 1 is represented by(

0
1

)
. The rank-one tensor e is

(
1
1

)
and represents the action

of summing over all possible value of the corresponding bit.
Finally, while the CNOT is usually viewed as an F2

2-linear
transformation, it is here represented by a rank-4 tensor. By

grouping the 4 indices of the tensor into two input indices a
and b and two output indices c and d as follows

, (10)

the action of the CNOT on a probability distribution P (a, b) ∈
R4 is CNOT: P (a, b)→ Q(c, d) = P (a, a⊕ b).

Sequential cancellation decoding thus consists in evaluating
this tensor network. A priori, this tensor network has a tree-
width that scales with N , so it cannot be contracted efficiently.
However, there exists algebraic relations between the elemen-
tary tensors which leads to important simplifications. These
identities are

= = =

(11)

and should have a clear intuitive meaning. Applying these
algebraic identities to the tensor network of Fig. 1 produces a
tensor network of constant tree-width, so it can be efficiently
evaluated.

The evaluation of the tensor network uses graphical identi-
ties, which simply perform some summations over connected
bonds:

=
, (12)

=
, (13)

=
. (14)

This notation encodes only the type of tensors being involved
in a calculation, without specifying the entries of each tensors.
This suffices to prove that all stages of the computation involve
constant-bounded degree tensors. Therefore it has constant
complexity. A recursive use of these identities leads to the
evaluation of the entire tensor network. Specifically, successive
cancellation decoding of the polar code under correlated noise
makes use of the identity Eq. 12, while the convolutional polar
code makes use of Eq. 13 and Eq. 14.

Note that the only difference incurred by the correlations in
the channel on these contraction identities is the presence of
horizontal bonds. The presence of correlation thus increases
the rank of the tensors involved in these identities by two.
In other words, the scalar entries of the tensor network
representing an uncorrelated channel become matrix entries
(rank-2 tensors) in the presence of correlations. So each scalar
multiplication involved in the successive cancellation decoder
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Fig. 2. Frame error rate (FER) as a function of various codes, decoders and Gilbert channel parameters. a) Varying the channel’s average burst length for
fixed h = 0.9, ρ = 5, and average error P (B)h = 0.15, the exact parameters can be found in Table I. Squares show polar code (pc) while triangles show
convolutional polar code (cpc), both with 10 polarization steps and rate 1

2
. The regular decoder (red) results in high FER, using an interleaver (green) to

mitigate correlations offers little improvement, while using the correlated decoder (blue) leads to a substantial reduction of the FER. b) Correlated decoder used
on polar code (pc, blue squares) and convolutional polar codes (cpc, red triangles) on a channel with parameters h = 0.9, PB→G = 0.05 and PG→B = 0.01
with a code rate of 1

3
as a function of the number of polarization steps. c) & d) As in a) for various polarization steps and using the correlated decoder for

c) polar code and d) convolutional polar code.

in absence of correlations is replaced by a d × d matrix
multiplication in the presence of correlations, hence a d3

complexity overhead.

III. NUMERICAL RESULTS

The encoding circuit G of Fig. 1 does not entirely specify
the code: one must in addition specify the frozen-bit locations
F . In our simulations, we used the following heuristic code
construction. For each position i, we evaluate the tensor
network of Fig. 1 with all bits U i−1

1 fixed to 0, bit Ui fixed to
1, and all positions to the left of i fixed to the rank-1 tensor e.
This tensor evaluates to a value E(i), and we freeze the bits
with the largest value of E(i). The quantity E(i) relates to
the probability of an undetected error at position i, and serves
as a good proxy for channel selection.

We simulated three types of decoding algorithms and corre-
sponding frozen bit sets. In the first set of simulations, we use
the standard decoding algorithm and code construction. In that
case we use the average channel Eq. 1 in our code construction
and decoding algorithm, but use the actual correlated channel
to generate errors. The second set of simulations uses the same
average channel Eq. 1 for code construction and decoding,
but generates errors according to the interleaved procedures.
We will denote these simulations with the prefix int. The
third set of simulations exploit the full correlated structure of
the channel both in the code design and decoding algorithm,
as described in the previous section. We use the prefix corr
to denote these simulations. Finally, all three simulation sets
include polar codes (pc) and convolutional polar codes (cpc).

Our numerical simulations used the Gilbert-Elliott channel
with hG = 0 so that state G is completely noiseless, and we
denote hB = h. This special case is usually referred to as
the Gilbert channel. The error burst length `B corresponds to
the length of a consecutive stay in state B. It has a geometric

〈`B〉 PB→G PG→B

2.5 0.4 0.08
4 0.25 0.05
7 0.145 0.029
13 0.075 0.015
20 0.05 0.01
40 0.025 0.005

TABLE I
CHANNEL PARAMETERS FOR THE SIMULATIONS OF FIG. 2a), c) & d).

distribution with average 〈`B〉 = 1/PB→G. Another channel
characteristic is the good-to-bad ratio

ρ =
P (G)

P (B)
=
PB→G
PG→B

.

The limits ρ → ∞ and ρ → 0 correspond respectively to a
noiseless channel and BSC(h).

Our main results are presented at Fig. 2, showing the frame
error rate (FER) for various codes, decoding and channel
parameters. We observe on Fig. 2a) that, for both polar and
convolutional polar codes, the use of an interleaver to mitigate
burst errors offers only a mild improvement of performance,
but that using a decoder that exploit the correlations offers a
significant improvement. This is true for a variety of channel
parameters, and as expected the improvement is reduced when
the burst length becomes close to 1, in which case we recover
an i.i.d. channel.

Figure 2b) presents a direct comparison of polar and convo-
lutional polar codes under correlated decoders. In both cases,
we observe a suppression of the FER as a function of the
number of polarization steps, but the convolutional polar code
achieves a larger suppression rate. This is consistent with
the findings of [4] in the context of i.i.d. channels and is
suggestive that convolutional polar codes may achieve a larger
error exponent on a wide variety of channels.

Finally, Fig. 2c) and d) present the performance of the
c) polar code and d) convolutional polar code with varying



number of polarization steps as a function of the channel’s
average burst length. Again, the performance of the convolu-
tional polar code are systematically better than those of the
polar code. In particular, for the convolutional polar code, we
observe a threshold behavior: there is a critical average burst
length 〈`B〉∗ ≈ 10 beyond which the FER decreases with the
number of polarization steps. This threshold behavior is not
observed for the polar code. This observation is suggestive of
two possible hypotheses: 1) In this parameter regime, the error
probability will asymptotically vanish for the convolutional
polar code but not for the polar code, i.e. polar codes cannot
polarize these channels while convolutional polar codes can.
2) The finite size effects are much more prominent in the
polar code than in the convolutional polar code. Both of these
hypotheses are interesting and warrant further investigation of
convolutional polar codes.

IV. CONCLUSION

Tensor network is a natural language in which to formu-
late the decoding problem. In this language, the efficiency
of successive cancellation decoding of polar codes follows
immediately from the tree structure of the corresponding ten-
sor network. The generalization to convolutional polar codes
is also efficient because the corresponding tensor network
has constant tree-width. What we have shown here is that
decoding a channel with memory increases the tree-width of
the resulting tensor network only by a constant amount, so the
decoding complexity is only affected by a constant factor. The
simplicity of these results illustrates the use of tensor network
in coding theory.

Our numerical simulations confirm that a substantial im-
provement (up to 12dB increase noise suppression in our
simulations) is obtained when taking channel correlations into
account during the decoding process and code construction.
Moreover, we found that convolutional polar codes outperform
regular polar codes (up to 5dB increase noise suppression in
our simulations) on a wide variety of channels with mem-
ory, extending the findings of [4] beyond the i.i.d. case. In
particular, our simulation suggest the existence of a range
of channel parameters where polar codes fail at polarizing
while convolutional polar codes succeed, an observation which
warrants further investigation into convolutional polar codes.
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